186 resultados para Ankylosing
Resumo:
Ankylosing spondylitis is a highly heritable, common rheumatic condition, primarily affecting the axial skeleton. The association with HLA-B27 has been demonstrated worldwide, and evidence for a role of HLA-B27 in disease comes from linkage and association studies in humans, and transgenic animal models. However, twin studies indicate that HLA-B27 contributes only 16% of the total genetic risk for disease. Furthermore, there is compelling evidence that non-B27 genes, both within and outwith the major histocompatability complex, are involved in disease aetiology. In this post-genomic era we have the tools to help elicit the genetic basis of disease. This review describes methods for genetic investigation of ankylosing spondylitis, and summarises the status of current research in this exciting area.
Resumo:
Purpose of review The field of genetic research in ankylosing spondylitis (AS) is advancing rapidly. The purpose of this review is to outline recent findings, particularly, in regard to genetic studies of the major histocompatibility complex (MHC) and the non-MHC genes IL23R, ERAP1, and killer cell immunologlobulin-like receptor (KIR) complex, in AS. Recent findings: Convincing evidence has been reported for the existence of further non-B27 MHC genes involved in AS. Strong, replicated association has been reported with IL23R and ERAP1 and AS. The IL23R finding strongly implicates the TH17 lymphocyte system in AS aetiopathogenesis. Suggestive evidence of a role for KIR gene polymorphism in AS exists, but definitive findings are awaited. Summary: The findings suggest that further genome-wide studies in large case-control cohorts are likely to be very productive in this disease. The IL23R findings and subsequent immunological investigations suggest that targeted intervention in the TH17 system is likely to have major therapeutic benefit, as it does in the genetically related diseases, inflammatory bowel disease and psoriasis.
Resumo:
Purpose of Review Over the past 3 years, several new genes and gene deserts have been identified that are associated with ankylosing spondylitis (AS). The purpose of this review is to discuss the major findings of these studies, and the answers they provide and questions they raise about the pathogenesis of this common condition. Recent Findings: Five genes/genetic regions have now definitively been associated with AS [the major histocompatibility complex (MHC), IL23R, ERAP1, 2p15 and 21q22]. Strong evidence to support association with the disease has been demonstrated for the genes IL1R2, ANTXR2, TNFSF15, TNFR1 and a region on chromosome 16q including the gene TRADD. There is an overrepresentation of genes involved in Th17 lymphocyte differentiation/activation among genes associated with AS and the related diseases inflammatory bowel disease and psoriasis, pointing strongly to this pathway as playing a major causative role in the disease. Increasing information about differential association of HLA-B27 subtypes with disease suggests a hierarchy of strength of association of those alleles with AS, providing a useful test as to the validity of different potential mechanisms of association of HLA-B27 with AS. The mechanism underlying the association of the gene deserts, 2p15 and 21q22, suggests the involvement of noncoding RNA in AS etiopathogenesis. Summary: The increasing list of genes identified as being definitely involved in AS provides a useful platform for hypothesis-driven research in the field, providing a potential alternative route to determining the underlying mechanisms involved in the disease to research focusing on HLA-B27 alone.
Resumo:
While twin studies have previously demonstrated high heritability of susceptibility to ankylosing spondylitis (AS), it is only recently that the involvement of genetic factors in determining the severity of the disease has been demonstrated. The genes involved in determining the rate of ankylosis in AS are likely to be different from those involved in the underlying immunologic events, and represent important potential targets for treatment of AS. This article will describe the progress that has been made in the genetic epidemiology of AS, and in identifying the genes involved.
Resumo:
Ankylosing spondylitis (AS) is a chronic inflammatory arthritis that affects the spine and sacroiliac joints. It causes significant disability and is associated with a number of other features including peripheral arthritis, anterior uveitis, psoriasis and inflammatory bowel disease (IBD). Significant progress has been made in the genetics of AS have in the last five years, leading to new treatments in trial, and major leaps in understanding of the aetiopathogenesis of the disease.
Resumo:
Ankylosing spondylitis (AS) is a common, highly heritable, inflammatory arthritis for which HLA-B*27 is the major genetic risk factor, although its role in the aetiology of AS remains elusive. To better understand the genetic basis of the MHC susceptibility loci, we genotyped 7,264 MHC SNPs in 22,647 AS cases and controls of European descent. We impute SNPs, classical HLA alleles and amino-acid residues within HLA proteins, and tested these for association to AS status. Here we show that in addition to effects due to HLA-B*27 alleles, several other HLA-B alleles also affect susceptibility. After controlling for the associated haplotypes in HLA-B, we observe independent associations with variants in the HLA-A, HLA-DPB1 and HLA-DRB1 loci. We also demonstrate that the ERAP1 SNP rs30187 association is not restricted only to carriers of HLA-B*27 but also found in HLA-B*40:01 carriers independently of HLA-B*27 genotype.
Resumo:
Ankylosing spondylitis is a model immunogenetic disease with major common and rare genetic risk factors, likely environmental contributors to its pathogenesis and, to date, no treatment that has been shown to induce disease remission in long-term studies. The discovery of the association of HLA-B27 with the disease in the early 1970s triggered extensive efforts to elucidate the mechanism of this association. However, the precise role of HLA-B27 in ankylosing spondylitis pathogenesis remains unclear. In recent years, rapid progress made in the discovery of non-MHC genes involved in susceptibility to ankylosing spondylitis has combined with increasing ability to investigate the immune system to make rapid progress in unraveling the etiopathogenesis of the condition. © 2013 Future Medicine Ltd.
Resumo:
Ankylosing spondylitis is a common, highly heritable inflammatory arthritis affecting primarily the spine and pelvis. In addition to HLA-B*27 alleles, 12 loci have previously been identified that are associated with ankylosing spondylitis in populations of European ancestry, and 2 associated loci have been identified in Asians. In this study, we used the Illumina Immunochip microarray to perform a case-control association study involving 10,619 individuals with ankylosing spondylitis (cases) and 15,145 controls. We identified 13 new risk loci and 12 additional ankylosing spondylitis-associated haplotypes at 11 loci. Two ankylosing spondylitis-associated regions have now been identified encoding four aminopeptidases that are involved in peptide processing before major histocompatibility complex (MHC) class I presentation. Protective variants at two of these loci are associated both with reduced aminopeptidase function and with MHC class I cell surface expression.
Resumo:
Ankylosing spondylitis (AS) and spondyloarthritis are strongly genetically determined. The long-standing association with HLA-B27 is well described, although the mechanism by which that association induces AS remains uncertain. Recent developments include the description of HLA-B27 tag single nucleotide polymorphisms in European and Asian populations. An increasing number of non-MHC genetic associations have been reported, which provided amongst other things the first evidence of the involvement of the IL-23 pathway in AS. The association with ERAP1 is now known to be restricted to HLA-B27 positive disease. Preliminary studies on the genetics of axial spondyloarthritis demonstrate a lower HLA-B27 carriage rate compared with AS. Studies with larger samples and including non-European ethnic groups are likely to further advance the understanding of the genetics of AS and spondyloarthritis. © 2012.
Resumo:
Objective. Unconfirmed reports describe association of ankylosing spondylitis (AS) with several candidate genes including ANKH. Cellular export of inorganic pyrophosphate is regulated by the ANK protein, and mutant mice (ank/ank), which have a premature stop codon in the 3′ end of the ank gene, develop severe ankylosis. We tested the association between single-nucleotide polymorphisms (SNP) in these genes and susceptibility to AS in a population of patients with AS. We investigated the role of these genes in terms of functional (BASFI) and metrological (BASMI) measures, and the association with radiological severity (mSASSS). Methods. Our study was conducted on 355 patients with AS and 95 ethnically matched healthy controls. AS was defined according to the modified New York criteria. Four SNP in ANKH (rs27356, rs26307, rs25957, and rs28006) were genotyped. Association analysis was performed using Cochrane-Armitage and linear regression tests for dichotomous and quantitative variables. Analyses of Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), BASFI, and mSASSS were controlled for sex and disease duration. Results. None of the 4 markers showed significant single-locus disease associations (p > 0.05), suggesting that ANKH was not a major determinant of AS susceptibility in our population. No association was observed between these SNP and age at symptom onset, BASDAI, BASFI, BASMI, or mSASSS. Conclusion. These results confirm data in white Europeans that ANKH is probably not a major determinant of susceptibility to AS. ANKH polymorphisms do not markedly influence AS disease severity, as measured by BASMI and mSASSS. The Journal of Rheumatology
Resumo:
Ankylosing Spondylitis (AS) is a common inflammatory rheumatic disease with a predilection for the axial skeleton, affecting 0.2% of the population. Current diagnostic criteria rely on a composite of clinical and radiological changes, with a mean time to diagnosis of 5 to 10 years. In this study we employed nano liquid-chromatography mass spectrometry analysis to detect and quantify proteins and small compounds including endogenous peptides and metabolites in serum from 18 AS patients and nine healthy individuals. We identified a total of 316 proteins in serum, of which 22 showed significant up- or down-regulation (p < 0.05) in AS patients. Receiver operating characteristic analysis of combined levels of serum amyloid P component and inter-α-trypsin inhibitor heavy chain 1 revealed high diagnostic value for Ankylosing Spondylitis (area under the curve = 0.98). We also depleted individual sera of proteins to analyze endogenous peptides and metabolic compounds. We detected more than 7000 molecular features in patients and healthy individuals. Quantitative MS analysis revealed compound profiles that correlate with the clinical assessment of disease activity. One molecular feature identified as a Vitamin D3 metabolite-(23S,25R)-25-hydroxyvitamin D3 26,23-peroxylactone-was down-regulated in AS. The ratio of this vitamin D metabolite versus vitamin D binding protein serum levels was also altered in AS as compared with controls. These changes may contribute to pathological skeletal changes in AS. Our study is the first example of an integration of proteomic and metabolomic techniques to find new biomarker candidates for the diagnosis of Ankylosing Spondylitis
Resumo:
Ankylosing spondylitis is a common form of inflammatory arthritis predominantly affecting the spine and pelvis that occurs in approximately 5 out of 1,000 adults of European descent. Here we report the identification of three variants in the RUNX3, LTBR-TNFRSF1A and IL12B regions convincingly associated with ankylosing spondylitis (P < 5 × 10-8 in the combined discovery and replication datasets) and a further four loci at PTGER4, TBKBP1, ANTXR2 and CARD9 that show strong association across all our datasets (P < 5 × 10-6 overall, with support in each of the three datasets studied). We also show that polymorphisms of ERAP1, which encodes an endoplasmic reticulum aminopeptidase involved in peptide trimming before HLA class I presentation, only affect ankylosing spondylitis risk in HLA-B27-positive individuals. These findings provide strong evidence that HLA-B27 operates in ankylosing spondylitis through a mechanism involving aberrant processing of antigenic peptides.
Resumo:
Ankylosing spondylitis (AS) is a common, highly heritable arthropathy, the pathogenesis of which is poorly understood. The mechanism by which the main gene for the disease, HLA-B27, leads to AS is unknown. Genetic and genomic studies have demonstrated involvement of the interleukin-23 (IL-23) signaling pathway in AS, a finding which has stimulated much new research into the disease and has led to therapeutic trials. Several other genes and genetic regions, including further major histocompatibility complex (MHC) and non-MHC loci, have been shown to be involved in the disease, but it is not clear yet how they actually induce the condition. These findings have shown that there is a strong genetic overlap between AS and Crohn's disease in particular, although there are also major differences in the genes involved in the two conditions, presumably explaining their different presentations. Genomic and proteomic studies are in an early phase but have potential both as diagnostic/prognostic tools and as a further hypothesis-free tool to investigate AS pathogenesis. Given the slow progress in studying the mechanism of association of HLA-B27 with AS, these may prove to be more fruitful approaches to investigating the pathogenesis of the disease. © 2009 John Wiley & Sons A/S.
Resumo:
Ankylosing spondylitis (AS) is the prototypic and most prevalent and debilitating spondyloarthropathy, a group of arthritides where the spine and pelvis are specifically targeted. Unlike many other forms of arthritis in which joint damage is mediated through tissue destruction, in AS uncontrolled bone formation occurs, frequently resulting in joint fusion and consequently significant disability. It is estimated that there are 2.4 million spondyloarthritis sufferers in the U.S., twice as many as rheumatoid arthritis. The pathogenesis of AS is very poorly understood and both genetics and gene expression profiling approaches have been utilized to elucidate the underlying mechanisms and pathways that drive the disease. Using powerful genome-wide association study approaches a number of candidate genes have been found to be associated with AS. However, although such approaches can identify genes that can contribute to the disease process, they do not inform us of the actual changes in gene/cell activity at any point in the disease process. Expression profiling allows us to take a "snapshot" of cellular activity and what gene activity changes are underlying those changes. A number of expression profiling studies have been undertaken in AS, looking at both circulating cells and tissues from affected joints. The results to date have been somewhat disappointing with little consensus on gene activity changes due to the low power of the studies undertaken. Some more recent better powered studies have identified diagnostic expression profiles that do point to a possible role for expression profiling in early AS diagnosis. Future studies will require collaborative approaches to target specific disease stages and sites with larger numbers of samples.