972 resultados para Angiotensin ii


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The renin-angiotensin system is a major contributor to the pathophysiology of cardiovascular diseases such as congestive heart failure and hypertension. Antagonizing angiotensin (Ang) II at the receptor site may produce fewer side effects than inhibition of the promiscuous converting enzyme. The present study was designed to assess in healthy human subjects the effect of LRB081, a new orally active AT1-receptor antagonist, on the pressor action of exogenous Ang II. At the same time, plasma hormones and drug levels were monitored. At 1-week intervals and in a double-blind randomized fashion, 8 male volunteers received three doses of LRB081 (10, 40, and 80 mg) and placebo. Blood pressure (BP) was measured at a finger by photoplethysmograph. The peak BP response to intravenous injection of a standard dose of Ang II was determined before and for < or = 24 h after administration of an oral dose of LRB081 or placebo. After drug administration, the blood BP response to Ang II was expressed in percent of the response before drug administration. At the same time, plasma renin activity (PRA), Ang II, aldosterone, catecholamine (radioassays), and drug levels (by high-performance liquid chromatography) were monitored. After LRB081 administration, a dose dependent inhibition of the BP response to Ang II was observed. Maximal inhibition of the systolic BP response was 54 +/- 3 (mean +/- SEM), 63 +/- 2, and 93 +/- 1% with 10, 40, and 80 mg LRB081, respectively. The time to peak was 3 h for 6 subjects and 4 and 6 h for 2 others. Preliminary plasma half-life (t1/2) was calculated at 2 h. With the highest dose, the inhibition remained significant for 24 h (31 +/- 5%, p < 0.05). Maximal BP-blocking effect and maximal plasma drug level coincided, suggesting that the unmetabolized LRB081 is responsible for the antagonistic effect. PRA and Ang II increased dose dependently after LRB081 intake. Aldosterone, epinephrine, and norepinephrine concentrations remained unchanged. No clinically significant adverse reaction was observed during the study. LRB081 is a well-tolerated, orally active, potent, and long-acting Ang II receptor antagonist. Unlike in the case of losartan, no active metabolite of LRB081 has been shown to be responsible for the main effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new ACE inhibitor trandolapril was administered to normal volunteers at daily doses of 0.5, 2, and 8 mg for 10 days. Twenty-one volunteers, aged 21-30 years, were included in the study. To randomly selected groups of seven subjects, each dose was administered in a single-blind fashion. None of the doses induced a consistent fall in blood pressure. Angiotensin-converting enzyme activity (ACE) was measured in vitro using three different synthetic substrates (i.e., Hip-Gly-Gly, Z-Phe-His-Leu, or angiotensin I). Although the degree of ACE inhibition assessed with the three methods varied widely, all methods clearly indicated dose-dependent ACE inhibition. These in vitro results were confirmed by measuring ACE inhibition in vivo using the ratio of plasma angiotensin II (ANG II) to blood angiotensin I (ANG I). The dose-dependent ACE inhibition was paralleled by a dose-dependent rise in active renin and blood angiotensin I levels, most evident on day 10. In contrast, plasma ANG II levels on day 10 were not different whether the volunteers received 0.5 or 8 mg trandolapril. Thus, whereas increasing doses of this new ACE inhibitor progressively enhanced the blockade of ACE activity, this was not reflected by additional reductions of plasma ANG II levels. The progressive enhancement of ACE inhibition seemed to be offset by the accentuation of the compensatory rise in renin and ANG I, which was still partially converted to ANG II.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiotensin II is a potent arterial vasoconstrictor and induces hypertension. Angiotensin II also exerts a trophic effect on cardiomyocytes in vitro. The goals of the present study were to document an in vivo increase in cardiac angiotensins in the absence of elevated plasma levels or hypertension and to investigate prevention or regression of ventricular hypertrophy by renin-angiotensin system blockade. We demonstrate that high cardiac angiotensin II is directly responsible for right and left ventricular hypertrophy. We used transgenic mice overexpressing angiotensinogen in cardiomyocytes characterized by cardiac hypertrophy without fibrosis and normal blood pressure. Angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade prevent or normalize ventricular hypertrophy. Surprisingly, in control mice, receptor blockade decreases tissue angiotensin II despite increased plasma levels. This suggests that angiotensin II may be protected from metabolization by binding to its receptor. Blocking of the angiotensin II type 1 receptor rather than enhanced stimulation of the angiotensin II type 2 receptor may prevent remodeling and account for the beneficial effects of angiotensin antagonists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Normal myocardium adapts to increase of nutritional fatty acid supply by upregulation of regulatory proteins of the fatty acid oxidation pathway. Because advanced heart failure is associated with reduction of regulatory proteins of fatty acid oxidation, we hypothesized that failing myocardium may not be able to adapt to increased fatty acid intake and therefore undergo lipid accumulation, potentially aggravating myocardial dysfunction. We determined the effect of high-fat diet in transgenic mice with overexpression of angiotensinogen in the myocardium (TG1306/R1). TG1306/R1 mice develop ANG II-mediated left ventricular hypertrophy, and at one year of age approximately half of the mice present heart failure associated with reduced expression of regulatory proteins of fatty acid oxidation and reduced palmitate oxidation during ex vivo working heart perfusion. Hypertrophied hearts from TG1306/R1 mice without heart failure adapted to high-fat feeding, similarly to hearts from wild-type mice, with upregulation of regulatory proteins of fatty acid oxidation and enhancement of palmitate oxidation. There was no myocardial lipid accumulation or contractile dysfunction. In contrast, hearts from TG1306/R1 mice presenting heart failure were unable to respond to high-fat feeding by upregulation of fatty acid oxidation proteins and enhancement of palmitate oxidation. This resulted in accumulation of triglycerides and ceramide in the myocardium, and aggravation of contractile dysfunction. In conclusion, hearts with ANG II-induced contractile failure have lost the ability to enhance fatty acid oxidation in response to increased fatty acid supply. The ensuing accumulation of lipid compounds may play a role in the observed aggravation of contractile dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tasosartan is a long-acting angiotensin II (AngII) receptor blocker. Its long duration of action has been attributed to its active metabolite enoltasosartan. In this study we evaluated the relative contribution of tasosartan and enoltasosartan to the overall pharmacological effect of tasosartan. AngII receptor blockade effect of single doses of tasosartan (100 mg p.o. and 50 mg i.v) and enoltasosartan (2.5 mg i.v.) were compared in 12 healthy subjects in a randomized, double blind, three-period crossover study using two approaches: the in vivo blood pressure response to exogenous AngII and an ex vivo AngII radioreceptor assay. Tasosartan induced a rapid and sustained blockade of AngII subtype-1 (AT1) receptors. In vivo, tasosartan (p.o. or i.v.) blocked by 80% AT1 receptors 1 to 2 h after drug administration and still had a 40% effect at 32 h. In vitro, the blockade was estimated to be 90% at 2 h and 20% at 32 h. In contrast, the blockade induced by enoltasosartan was markedly delayed and hardly reached 60 to 70% despite the i.v. administration and high plasma levels. In vitro, the AT1 antagonistic effect of enoltasosartan was markedly influenced by the presence of plasma proteins, leading to a decrease in its affinity for the receptor and a slower receptor association rate. The early effect of tasosartan is due mainly to tasosartan itself with little if any contribution of enoltasosartan. The antagonistic effect of enoltasosartan appears later. The delayed in vivo blockade effect observed for enoltasosartan appears to be due to a high and tight protein binding and a slow dissociation process from the carrier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: The endogenous opioid system has been reported to interact with both the cardiac sympathetic and renin-angiotensin systems in exerting a local regulatory action on the heart. The goal of this investigation was to examine how cardiac levels of enkephalin production are altered in the development of normotensive primary hypertrophy due to elevated intra-cardiac angiotensin II (Ang II) production. METHODS: Atrial and ventricular methionine-enkephalin (ME) levels were measured by quantitative radioimmunoassay in 14 and 28-week-old male transgenic mice (TG1306/1R) and control mice. The TG1306/1R exhibit cardiac specific Ang II overexpression and cardiac hypertrophy, but not hypertension. RESULTS: TG1306/1R mice had significantly higher heart/body weight ratios (15-20%) than control littermates at both 14 (p=0.02) and 28 weeks (p=0.04). Relative to controls, ME content was significantly elevated (approximately two-fold) in atria and ventricles in the older 28-week TG1306/1R mice only. A significant inverse correlation between heart size and ME level was observed for 28-week TG1306/1R only. CONCLUSIONS: We have provided evidence that a marked elevation of myocardial enkephalin level is observed in the established (but not early) phase of cardiac hypertrophy associated with cardiac-specific Ang II-overexpression. This study identifies a potentially important relationship between two endogenous peptidergic signalling systems involved in the regulation of growth and function of the hypertrophic heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in vitro angiotensin II (AngII) receptor-binding assay was developed to monitor the degree of receptor blockade in standardized conditions. This in vitro method was validated by comparing its results with those obtained in vivo with the injection of exogenous AngII and the measurement of the AngII-induced changes in systolic blood pressure. For this purpose, 12 normotensive subjects were enrolled in a double-blind, four-way cross-over study comparing the AngII receptor blockade induced by a single oral dose of losartan (50 mg), valsartan (80 mg), irbesartan (150 mg), and placebo. A significant linear relationship between the two methods was found (r = 0.723, n = 191, P<.001). However, there exists a wide scatter of the in vivo data in the absence of active AngII receptor blockade. Thus, the relationship between the two methods is markedly improved (r = 0.87, n = 47, P<.001) when only measurements done 4 h after administration of the drugs are considered (maximal antagonist activity observed in vivo) suggesting that the two methods are equally effective in assessing the degree of AT-1 receptor blockade, but with a greatly reduced variability in the in vitro assay. In addition, the pharmacokinetic/pharmacodynamic analysis performed with the three antagonists suggest that the AT-1 receptor-binding assay works as a bioassay that integrates the antagonistic property of all active drug components of the plasma. This standardized in vitro-binding assay represents a simple, reproducible, and precise tool to characterize the pharmacodynamic profile of AngII receptor antagonists in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this investigation was to examine the interrelation between renal mRNA levels of renin and angiotensin II receptor type 1 (AT1) in a renin-dependent form of experimental hypertension. Rats were studied 4 weeks after unilateral renal artery clipping. Mean blood pressure and plasma renin activity were significantly higher in the hypertensive rats (n = 10 206 +/- mm Hg and 72.4 +/- 20.9 ng/mL-1/h-1, respectively) than in sham-operated controls (n = 10, 136 +/- 3 mm Hg and 3.3 +/- 0.5 ng/mL-1/h, respectively). Northern blot analysis of polyA+ RNA obtained from the kidneys of renal hypertensive rats showed increased levels of renin mRNA in the clipped kidney, whereas a decrease was observed in the unclipped kidney. Plasma renin activity was directly correlated with renin mRNA expression of the poststenotic kidney (r = .94, P < .01). AT1 mRNA expression was lower in both kidneys of the hypertensive rats. This downregulation was specific for the AT1A subtype since the renal expression of the AT1B subtype remained normal in hypertensive rats. The downregulation of the renal AT1A receptor may be due to high circulating angiotensin II levels. This is supported by the significant inverse correlation (r = .71, P < .01) between plasma renin activity and AT1A mRNA expression measured in the clipped kidney of the hypertensive rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to assess the inhibitory effect of TCV-116, an orally active angiotensin II (Ang II) antagonist, on the pressor action of exogenous Ang II and to determine the compensatory rise in plasma renin activity and Ang II levels. Twenty-three male volunteers were treated for 8 days in a double-blind fashion with either placebo or TCV-116 (1, 2, or 4 mg PO daily) and challenged on the first, fourth, and eighth days with repeated bolus injections of Ang II. An additional 4 subjects received 8 mg PO daily in a single-blind fashion. The inhibitory effect on the systolic blood pressure response to Ang II was long lasting and clearly dose related. Six hours after 4 mg TCV-116, the systolic blood pressure response to a given dose of Ang II was reduced to 40 +/- 4% and 35 +/- 8% of baseline value on days 1 and 8, respectively. TCV-116 induced a dose-related increase in plasma renin activity and Ang II levels that was more pronounced on the eighth than on the first day of drug administration. Despite this compensatory mechanism, the relation between the time-integrated systolic blood pressure response to Ang II and the time-integrated CV-11974 levels, the active metabolite of TCV-116, was not different between days 1 and 8. In conclusion, TCV-116 appears to be a well-tolerated, orally active, potent, and long-lasting antagonist of Ang II in men.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blockade of the renin-angiotensin-aldosterone cascade is now recognised as a very effective approach to treat hypertensive, heart failure and high cardiovascular risk patients and to retard the development of renal failure. The purpose of this review is to discuss the state of development of currently available drugs blocking the renin-angiotensin system, such as angiotensin converting enzyme (ACE) inhibitors, renin inhibitors and angiotensin II receptor antagonists, with a special emphasis on the results of the most recent trials conducted with AT(2) receptor antagonists in heart failure and Type 2 diabetes. In addition, the future perspectives of drugs with dual mechanisms of action, such as NEP/ACE inhibitors, also named vasopeptidase inhibitors, are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Acute blockade of the renin-angiotensin system with the parenterally active angiotensin II antagonist saralasin has been shown to effectively lower blood pressure in a large fraction of patients with essential hypertension and to improve haemodynamics in some patients with congestive heart failure. It is now possible to chronically antagonize angiotensin II at its receptor using non-peptide angiotensin II inhibitors such as losartan (DuP 753/MK-954) or TCV 116. EFFECT OF NON-PEPTIDE ANGIOTENSIN II ANTAGONISTS: When administered by mouth, DuP 753 and TCV 116 induce dose-dependent inhibition of the pressor response to exogenous angiotensin II. This effect is closely related to circulating levels of the corresponding active metabolites E3174 and CV11974. Preliminary studies performed in hypertensive patients suggest that losartan lowers blood pressure to an equivalent extent to an angiotensin converting enzyme (ACE) inhibitor. CONCLUSIONS: Further investigation is required to show whether these new angiotensin II antagonists compounds compare favourably with ACE inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To test the hypothesis that the trophic action of angiotensin II on the adrenal zona glomerulosa may allow a sustained stimulation of aldosterone by ACTH by preventing the morphological changes of the zona glomerulosa cells into zona fasciculata-like elements we investigated the effects in rats of a 6-day treatment with ACTH (100 micrograms/kg/day) alone or combined with angiotensin II (300 ng/kg/day) on corticosterone and aldosterone production and adrenal morphology. The responsiveness of both steroids to an acute ACTH dose was also studied on the last day of long-term treatment. Morphologic data showed that prolonged ACTH treatment stimulated the growth of zona glomerulosa cells, though it transformed the tubulo-lamellar cristae of mitochondria into a homogeneous population of vesicles. Angiotensin II furthered the trophic effects of ACTH but prevented the mitochondrial transformation. Despite its ability to conserve the well differentiated aspect of the zona glomerulosa cells, the administration of angiotensin II was unable to prevent the fall in the secretion of aldosterone caused by chronic ACTH treatment and its subsequent unresponsiveness to ACTH stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: In addition to its haemodynamic effects, angiotensin II (AngII) is thought to contribute to the development of cardiac hypertrophy via its growth factor properties. The activation of mitogen-activated protein kinases (MAPK) is crucial for stimulating cardiac growth. Therefore, the present study aimed to determine whether the trophic effects of AngII and the AngII-induced haemodynamic load were associated with specific cardiac MAPK pathways during the development of hypertrophy. Methods The activation of the extracellular-signal-regulated kinase (ERK), the c-jun N-terminal kinase (JNK) and the p38 kinase was followed in the heart of normotensive and hypertensive transgenic mice with AngII-mediated cardiac hypertrophy. Secondly, we used physiological models of AngII-dependent and AngII-independent renovascular hypertension to study the activation of cardiac MAPK pathways during the development of hypertrophy. RESULTS: In normotensive transgenic animals with AngII-induced cardiac hypertrophy, p38 activation is associated with the development of hypertrophy while ERK and JNK are modestly stimulated. In hypertensive transgenic mice, further activation of ERK and JNK is observed. Moreover, in the AngII-independent model of renovascular hypertension and cardiac hypertrophy, p38 is not activated while ERK and JNK are strongly stimulated. In contrast, in the AngII-dependent model, all three kinases are stimulated. CONCLUSIONS: These data suggest that p38 activation is preferentially associated with the direct effects of AngII on cardiac cells, whereas stimulation of ERK and JNK occurs in association with AngII-induced mechanical stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Use of angiotensin (Ang) II AT1 receptor antagonists for treatment of hypertension is rapidly increasing, yet direct comparisons of the relative efficacy of antagonists to block the renin-angiotensin system in humans are lacking. In this study, the Ang II receptor blockade induced by the recommended starting dose of 3 antagonists was evaluated in normotensive subjects in a double-blind, placebo-controlled, randomized, 4-way crossover study. At 1-week intervals, 12 subjects received a single dose of losartan (50 mg), valsartan (80 mg), irbesartan (150 mg), or placebo. Blockade of the renin-angiotensin system was assessed before and 4, 24, and 30 hours after drug intake by 3 independent methods: inhibition of the blood pressure response to exogenous Ang II, in vitro Ang II receptor assay, and reactive changes in plasma Ang II levels. At 4 hours, losartan blocked 43% of the Ang II-induced systolic blood pressure increase; valsartan, 51%; and irbesartan, 88% (P<0.01 between drugs). The effect of each drug declined with time. At 24 hours, a residual effect was found with all 3 drugs, but at 30 hours, only irbesartan induced a marked, significant blockade versus placebo. Similar results were obtained when Ang II receptor blockade was assessed with an in vitro receptor assay and by the reactive rise in plasma Ang II levels. This study thus demonstrates that the first administration of the recommended starting dose of irbesartan induces a greater and longer lasting Ang II receptor blockade than that of valsartan and losartan in normotensive subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are only a few studies on the ontogeny and differentiation process of the hypothalamic supraoptic-paraventriculo-neurohypophysial neurosecretory system. In vitro neuron survival improves if cells are of embryonic origin; however, surviving hypothalamic neurons in culture were found to express small and minimal amounts of arginine-vasopressin (AVP) and oxytocin (OT), respectively. The aim of this study was to develop a primary neuronal culture design applicable to the study of magnocellular hypothalamic system functionality. For this purpose, a primary neuronal culture was set up after mechanical dissociation of sterile hypothalamic blocks from 17-day-old Sprague-Dawley rat embryos (E17) of both sexes. Isolated hypothalamic cells were cultured with supplemented (B27)-NeuroBasal medium containing an agent inhibiting non-neuron cell proliferation. The neurosecretory process was characterized by detecting AVP and OT secreted into the medium on different days of culture. Data indicate that spontaneous AVP and OT release occurred in a culture day-dependent fashion, being maximal on day 13 for AVP, and on day 10 for OT. Interestingly, brain-derived neurotrophic factor (BDNF) and Angiotensin II (A II) were able to positively modulate neuropeptide output. Furthermore, on day 17 of culture, non-specific (high-KCl) and specific (Angiotensin II) stimuli were able to significantly (P < 0.05) enhance the secretion of both neuropeptides over respective baselines. This study suggests that our experimental design is useful for the study of AVP- and OT-ergic neuron functionality and that BDNF and A II are positive modulators of embryonic hypothalamic cell development.