952 resultados para Analytic number theory


Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El novembre de 1859 Riemann envià un manuscrit de sis fulls a l’Acadèmia de Berlín titulat Sobre el nombre de primers menors que una quantitat donada, el qual seria l’única publicació dedicada a la teoria de nombres de tota la seva producció científica. Aquest treball, sens dubte una de les peces mestres de les matemàtiques de tots els temps, és pioner en l’aplicació de tècniques analítiques per a l’estudi de problemes aritmètics. En ell Riemann introdueix la funció Z i en dóna diverses propietats, de les quals en treu conseqüències sobre l’acumulació dels nombres primers. També hi enuncia la famosa conjectura sobre els seus zeros que ha passat a la història amb el nom d’hipòtesi de Riemann, i que, havent resistit els esforços de molts dels millors matemàtics del segle xx, és considerada avui dia el problema obert més important de les matemàtiques. L’objectiu d’aquestes notes és explicar el contingut del treball de Riemann i el paper fonamental que ha jugat en l’estudi de la distribució dels nombres primers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this thesis is to investigate some open problems in the area of combinatorial number theory referred to as zero-sum theory. A zero-sequence in a finite cyclic group G is said to have the basic property if it is equivalent under group automorphism to one which has sum precisely IGI when this sum is viewed as an integer. This thesis investigates two major problems, the first of which is referred to as the basic pair problem. This problem seeks to determine conditions for which every zero-sequence of a given length in a finite abelian group has the basic property. We resolve an open problem regarding basic pairs in cyclic groups by demonstrating that every sequence of length four in Zp has the basic property, and we conjecture on the complete solution of this problem. The second problem is a 1988 conjecture of Kleitman and Lemke, part of which claims that every sequence of length n in Zn has a subsequence with the basic property. If one considers the special case where n is an odd integer we believe this conjecture to hold true. We verify this is the case for all prime integers less than 40, and all odd integers less than 26. In addition, we resolve the Kleitman-Lemke conjecture for general n in the negative. That is, we demonstrate a sequence in any finite abelian group isomorphic to Z2p (for p ~ 11 a prime) containing no subsequence with the basic property. These results, as well as the results found along the way, contribute to many other problems in zero-sum theory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is an attempt to initiate the development of a discrete geometry of the discrete plane H = {(qmxo,qnyo); m,n e Z - the set of integers}, where q s (0,1) is fixed and (xO,yO) is a fixed point in the first quadrant of the complex plane, xo,y0 ¢ 0. The discrete plane was first considered by Harman in 1972, to evolve a discrete analytic function theory for geometric difference functions. We shall mention briefly, through various sections, the principle of discretization, an outline of discrete a alytic function theory, the concept of geometry of space and also summary of work done in this thesis

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that the locally free class group of an order in a semisimple algebra over a number field is isomorphic to a certain ray class group. This description is then used to present an algorithm that computes the locally free class group. The algorithm is implemented in MAGMA for the case where the algebra is a group ring over the rational numbers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Let E be a number field and G be a finite group. Let A be any O_E-order of full rank in the group algebra E[G] and X be a (left) A-lattice. We give a necessary and sufficient condition for X to be free of given rank d over A. In the case that the Wedderburn decomposition E[G] \cong \oplus_xM_x is explicitly computable and each M_x is in fact a matrix ring over a field, this leads to an algorithm that either gives elements \alpha_1,...,\alpha_d \in X such that X = A\alpha_1 \oplus ... \oplusA\alpha_d or determines that no such elements exist. Let L/K be a finite Galois extension of number fields with Galois group G such that E is a subfield of K and put d = [K : E]. The algorithm can be applied to certain Galois modules that arise naturally in this situation. For example, one can take X to be O_L, the ring of algebraic integers of L, and A to be the associated order A(E[G];O_L) \subseteq E[G]. The application of the algorithm to this special situation is implemented in Magma under certain extra hypotheses when K = E = \IQ.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exercises and solutions in LaTex

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exercises and solutions in LaTex

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exercises and solutions in PDF

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exercises and solutions in PDF

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exercises and solutions in LaTex

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lecture notes in PDF

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exam and solutions in PDF

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exercises and solutions in PDF