945 resultados para Anaerobic Threshold
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O objetivo deste estudo foi comparar a intensidade de exercício no lactato mínimo (LACmin), com a intensidade correspondente ao limiar de lactato (LL) e limiar anaeróbio (LAn). Participaram do estudo, 11 atletas do sexo masculino (idade, 22,5 + 3,17 anos; altura, 172,3 + 8,2 cm; peso, 66,9 + 8,2kg; e gordura corporal, 9,8 + 3,4%). Os indivíduos foram submetidos, em uma bicicleta eletromagnética (Quinton - Corival 400), a dois testes: 1) exercício contínuo de cargas crescentes - carga inicial de 100W, com incrementos de 25W a cada três min. até a exaustão voluntária; e 2) teste de lactato mínimo - inicialmente os indivíduos pedalaram duas vezes 425W (+ 120%max) durante 30 segundos, com um min. de intervalo, com o objetivo de induzir o acúmulo de lactato. Após oito min. de recuperação passiva, os indivíduos iniciaram um teste contínuo de cargas progressivas, idêntico ao descrito anteriormente. O LL e o LAn foram identificados como sendo o menor valor entre a razão - lactato sanguíneo (mM) / intensidade de exercício (W), e a intensidade correspondente a 3,5mM de lactato sanguíneo, respectivamente. O LACmin foi identificado como sendo a intensidade correspondente a menor concentração de lactato durante o teste de cargas progressivas. Não foi observada diferença significante entre a potência do LL (197,7 + 20,7W) e do LACmin (201,6 + 13,0W), sendo ambas significantemente menores do que do LAn (256,7 + 33,3W). Não foram encontradas também diferenças significantes para o (ml.kg-1.min-1) e a FC (bpm) obtidos no LL (43,2 + 5,01; 152,0 + 13,0) e no LACmin (42,1 + 3,9; 159,0 + 10,0), sendo entretanto significantemente menores do que os obtidos para o LAn (52,2 + 8,2; 174,0 + 13,0, respectivamente). Pode-se concluir que o teste de LACmin, nas condições experimentais deste estudo, pode subestimar a intensidade de MSSLAC (estimada indiretamente pelo LAn), o que concordacom outros estudos que determinaram a MSSLAC diretamente. Assim, são necessários mais estudos que analisem o possível componente tempo-dependente (intensidade inicial) que pode existir no protocolo do LACmin.
Resumo:
O objetivo deste estudo foi analisar os efeitos do treinamento de natação na intensidade do limiar anaeróbio (LAn), determinado na piscina e no ergômetro de braço, verificando se este pode ser utilizado para avaliar os efeitos do treinamento em nadadores. Participaram do estudo sete nadadores de ambos os sexos, com nível de performance regional, que foram submetidos aos seguintes testes, antes e após oito semanas de treinamento: 1) dois tiros de 400m, um a 85% e outro a 95% do máximo, com coleta de 25mil de sangue do lóbulo da orelha no 1º, 3º e 5º minuto após cada tiro, para posterior análise do lactato sanguíneo (YSI 1500); 2) teste contínuo progressivo realizado no ergômetro de braço (UBE 2462 Cybex), com carga inicial de 33,3W e incrementos de 16,6W a cada três minutos até a exaustão voluntária, com coleta de sangue ao final de cada estágio. Um grupo controle de indivíduos não ativos (n = 9), que se manteve sedentário, realizou somente o procedimento 2 no mesmo intervalo de tempo. O LAn na natação (NLAn) e no ergômetro de braço (BLAn) foi encontrado através de interpolação linear, considerando uma concentração fixa de lactato de 4mM e 3,5mM, respectivamente. Os resultados demonstram diferença significante para o grupo treinado, entre o pré (130,4 ± 20,4W) e o pós-teste (137,7 ± 17,9W) para o BLAn. Porém, não foi encontrada diferença significante para o NLAn (1,09 ± 0,1m.s-1 e 1,13 ± 0,1m.s-1, p = 0,06). No grupo controle não foi encontrada diferença para o BLAn entre o pré (93,2 ± 11,5W) e o pós-teste (87,7 ± 7,2W). Pode-se concluir através desses dados que a determinação do LAn no ergômetro de braço é útil para detectar adaptações na capacidade aeróbia de nadadores com nível de performance regional.
Resumo:
The objectives of this study were: a) to determine, in a cross-sectional manner, the effect of aerobic training on the peak oxygen uptake, the intensity at O2peak and the anaerobic threshold (AnT) during running and cycling; and b) to verify if the transference of the training effects are dependent on the analized type of exercise or physiological index. Eleven untrained males (UN), nine endurance cyclists (EC), seven endurance runners (ER), and nine triathletes (TR) were submitted, on separate days, to incremental tests until voluntary exhaustion on a mechanical braked cycle ergometer and on a treadmill. The values of O2peak (ml.kg-1.min-1) obtained in running and cycle ergometer (ER = 68.8 ± 6.3 and 62.0 ± 5.0; EC = 60.5 ± 8.0 and 67.6 ± 7.6; TR = 64.5 ± 4.8 and 61.0 ± 4.1; UN = 43.5 ± 7.0 and 36.7 ± 5.6; respectively) were higher in the group that presented specific training in the modality. The UN group presented the lower values of O2peak, regardless of the type of exercise. This same behavior was observed for the AnT (ml.kg-1.min-1) determined in running and cycle ergometer (ER = 56.8 ± 6.9 and 44.8 ± 5.7; EC = 51.2 ± 5.2 and 57.6 ± 7.1; TR = 56.5 ± 5.1 and 49.0 ± 4.8; UN = 33.2 ± 4.2 and 22.6 ± 3.7; respectively). It can be concluded that the transference of the training effects seems to be only partial, independently of the index (O2peak, IO2peak or AnT) or exercise type (running or cycling). In relation to the indices, the specificity of training seems to be less present in the O2peak than in the IO2peak and the AnT.
Resumo:
O objetivo deste estudo foi analisar a validade do consumo máximo de oxigênio (VO2max), da velocidade correspondente ao VO2max (vVO2max), do tempo de exaustão na vVO2max (Tlim), da economia de corrida (EC) e do limiar anaeróbio (LAn) para a predição da performance de atletas de endurance. Quatorze corredores de endurance (33,4 ± 4,4 anos; 62,7 ± 4,3kg; 166,1 ± 5,0cm; VO2max = 60,4 ± 5,9ml.kg-1.min-1) realizaram os seguintes testes: a) competição simulada nas distâncias de 1.500 e 5.000m. e; b) testes de laboratório para a determinação do VO2max, vVO2max, EC, LAn e Tlim na intensidades de 100% vVO2max. As velocidades (km/h) da vVO2max (18,7 ± 0,8), LAn (17,3 ± 1,1) v1.500m (19,9 ± 0,8) e v5.000m (17,9 ± 0,9) foram significantemente diferentes. A regressão múltipla stepwise revelou que o LAn foi o único preditor da performance da v5.000m, explicando 50% da variação desta performance. Para a v1.500m, o Tlim e a vVO2max explicaram 88% da variação da performance. Com base em nossos resultados, pode-se concluir que a validade dos índices fisiológicos (VO2max, vVO2max, Tlim, EC e LAn), para a predição da performance aeróbia de atletas de endurance, é dependente da distância da prova (1.500 x 5.000m) analisada.
Resumo:
O objetivo do presente estudo foi verificar a utilização da velocidade de 30 minutos (VT-30), freqüência de braçada (fB), comprimento de braçada (CB) e índice de braçada (IB), obtidos no teste T-30, como métodos não-invasivos para determinação da performance aeróbia e técnica de nadadores treinados. Catorze nadadores submeteram-se a três esforços de 400m (85, 90 e 100% do esforço máximo) para determinação da velocidade de limiar anaeróbio (VLan) correspondente à concentração fixa de 3,5mM de lactato e um esforço máximo de 30 minutos (VT-30). fB, CB e IB foram calculados nos 10m centrais da piscina (nado limpo) para o teste T-30 (fBT-30, CBT-30 e IBT-30) e progressivo. Através da relação entre VLan e parâmetros de braçada no teste progressivo, determinaram-se freqüência de braçada de limiar (fBLan), comprimento de braçada de limiar (CBLan) e índice de braçada de limiar (IBLan). O tempo para realizar 400m em máximo esforço foi considerado como parâmetro de performance (P400). Não foi encontrada diferença significativa entre VLan (1,29 ± 0,07m.s-1) e VT-30 (1,29 ± 0,08m.s-1), que ainda apresentaram alta correlação (r = 0,90). Os valores de fBLan (33,6 ± 4,14 ciclos/min) e fBT-30 (34,9 ± 3,53 ciclos/min) e de CBLan (2,09 ± 0,20m/ciclo) e CBT-30 (2,09 ± 0,20m/ciclo) também não foram significativamente diferentes. Correlações significativas (p < 0,05) também foram encontradas entre VT-30 e P400 (r = 0,95); fBLan e fBT-30 (r = 0,73); CBLan e CBT-30 (r = 0,89) e IBLan e IBT-30 (r = 0,94). Conclui-se que a VT30 se mostrou confiável para o monitoramento do treinamento, predição da performance e determinação de parâmetros relacionados à técnica de nadadores.
Resumo:
O objetivo principal deste estudo foi verificar se diferentes formas de indução à acidose interferem na determinação da intensidade do lactato mínimo (LACmin) em corredores de longa distância. Desse modo, 14 corredores de provas fundas do atletismo participaram do estudo. Os atletas realizaram três protocolos: 1) teste incremental em esteira rolante, com incrementos de 1km.h-1 a cada três minutos até a exaustão, para a determinação das intensidades de limiar anaeróbio (OBLA), de limiar aeróbio (Laer), consumo máximo de oxigênio (VO2max) e intensidade de consumo máximo de oxigênio (vVO2max); 2) teste de lactato mínimo em pista de atletismo (LACminp), que consistiu de dois esforços máximos de 233m na pista de atletismo com intervalo de um minuto entre cada repetição, com oito minutos de recuperação passiva, seguido de um teste incremental semelhante ao do protocolo 1; e 3) teste de lactato mínimo em esteira rolante (LACmine), constituído de dois esforços máximos de um minuto e 45 segundos com intervalo de um minuto, na intensidade de 120% da vVO2max, seguido dos mesmos procedimentos do protocolo 2. Foram coletadas amostras de sangue do lóbulo da orelha ao final de cada estágio em todos os protocolos e no 7º minuto de recuperação passiva dos testes de LACmine e LACminp. A análise de variância (ANOVA) mostrou que ocorreram diferenças significativas entre as intensidades de LACmine (13,23 ± 1,78km.h-1) e OBLA (14,67 ± 1,44km.h-1). Dessa maneira, a partir dos resultados obtidos no presente estudo, é possível concluir que a determinação da intensidade correspondente ao lactato mínimo é dependente do protocolo utilizado para a indução à acidose. Além disso, o LACmine subestimou a intensidade correspondente ao OBLA, não podendo ser utilizado para a mensuração da capacidade aeróbia de corredores fundistas.
Resumo:
O objetivo deste estudo foi analisar a validade do consumo máximo de oxigênio (VO2max), velocidade associada ao VO2max (vVO2max), tempo de exaustão na vVO2max (Tlim), limiar anaeróbio (LAn), economia de corrida (EC) e força explosiva (FE) para predizer a performance aeróbia de corredores de endurance nas distâncias de 1.500m, 5.000m e 10.000m. Participaram deste estudo 11 corredores de endurance moderadamente treinados (28,36 ± 6,47 anos) que realizaram os seguintes testes: provas simuladas em uma pista de 400m em diferentes dias, nas distâncias de 10.000m, 5.000m e 1.500m; teste incremental máximo para determinar os índices VO2max, vVO2max, e LAn; um teste submáximo de carga constante para determinar a EC, seguido por um teste máximo também de carga constante a 100% da vVO2max para determinar o Tlim; e um teste de salto vertical para determinar a FE. de acordo com a análise de regressão múltipla, a vVO2max utilizada de forma isolada explicou 57% da variação de performance na prova de 1.500m. No entanto, quando o Tlim, a FE e a vVO2max foram analisados em conjunto, a explicação para a performance nessa prova foi de 88%. Nos 5.000m, o Tlim, a vVO2max e o LAn responderam por 88% da variação de performance (p < 0,05). Diferentemente, na prova de 10.000m, o LAn foi a única variável que apresentou capacidade de predição de performance. em conclusão, a predição da performance aeróbia de corredores moderadamente treinados por meio de variáveis fisiológicas e neuromusculares é dependente da distância da prova (1.500m, 5.000m e 10.000m)
Resumo:
O objetivo do presente estudo foi comparar as intensidades do ponto de compensação respiratório (PCR), limiar anaeróbio de concentração fixa (OBLA3,5) e limiar anaeróbio de lactato de aumento abrupto lactacidêmico (LAnLAC) determinadas em diferentes ergômetros. Para isso, onze mesatenistas (19±1 anos) realizaram testes incrementais máximos no cicloergômetro, ergômetro de braço, esteira e em teste específico para o tênis de mesa. Durante esses esforços, foram mensuradas as repostas lactacidêmica e respiratória. Na análise intraergômetro, não foram encontradas diferenças significativas entre o PCR, LAnLAC e OBLA3,5 no ergômetro de braço (63,4±4,8W, 66,9±4,5W e 64,5±6,1W, respectivamente), esteira (11,4±0,4km.h-1, 11,3±0,3km.h-1 e 11,1±0,3km.h-1, respectivamente) e teste específico (40,5±1,8bolas.min-1, 42,6±3,6bolas.min-1 e 42,8±5,6bolas.min-1, respectivamente); apenas no cicloergômetro foi verificado menor valor de OBLA3,5 (131,9±6,6W) em relação ao PCR (149,3±4,9W) e o LAnLAC (149,3±4,7W). No entanto, fortes e significativas correlações foram verificadas no teste específico entre todos esses métodos (r entre 0,83 a 0,95), entre o PCR e OBLA3,5 no ergômetro de braço (r=0,78) e entre OBLA3,5 e LAnLAC na esteira (r=0,76). Desse modo, podemos concluir que o PCR, OBLA3,5 e LAnLAC parecem corresponder ao mesmo fenômeno fisiológico, principalmente, no teste específico para o tênis de mesa.
Resumo:
Introduction - the aim of this study was to analyze the validity of the critical speed (CS) to determine the speed corresponding to 4 mmol 1(-1) of blood lactate (S4) and the speed in a 30 min test (S30min) of swimmers aged 10-15 years.Synthesis of facts - CS, S4 and S30min were determined in 12 swimmers (eight boys and four girls) divided into two groups: 10-12 years and 13-15 years.Conclusion - CS was a good predictor of aerobic performance (S30min) independent of the chronological age, providing practical information about the aerobic performance state of young swimmers. (C) 2002, Editions scientifiques et medicates, Elsevier SAS. All rights reserved.
Resumo:
The maximal lactate steady state (MLSS) is defined as the highest blood lactate concentration that can be maintained over time without a continual blood lactate accumulation. The objective of the present study was to analyze the effects of pedal cadence (50 vs. 100 rev min(-1)) on MLSS and the exercise workload at MLSS (MLSSworkload) during cycling. Nine recreationally active males (20.9 +/- 2.9 years, 73.9 +/- 6.5 kg, 1.79 +/- 0.09 m) performed an incremental maximal load test (50 and 100 rev min(-1)) to determine anaerobic threshold (AT) and peak workload (PW), and between two and four constant submaximal load tests (50 and 100 rev min(-1)) on a mechanically braked cycle ergometer to determine MLSSworkload and MLSS. MLSSworkload was defined as the highest workload at which blood lactate concentration did not increase by more than 1 mM between minutes 10 and 30 of the constant workload. The maximal lactate steady state intensity (MLSSintensity) was defined as the ratio between MLSSworkload and PW. MLSSworkload (186.1 +/- 21.2 W vs. 148.2 +/- 15.5 W) and MLSSintensity (70.5 +/- 5.7% vs. 61.4 +/- 5.1%) were significantly higher during cycling at 50 rev min(-1) than at 100 rev min(-1), respectively. However, there was no significant difference in MLSS between 50 rev min(-1) (4.8 +/- 1.6 mM) and 100 rev min(-1) (4.7 +/- 0.8 mM). We conclude that MLSSworkload and MLSSintensity are dependent on pedal cadence (50 vs. 100 rev min(-1)) in recreationally active individuals. However, this study showed that MLSS is not influenced by the different pedal cadences analyzed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study analyzed the influence of recovery phase manipulation after hyperlactemia induction on the lactate minimum intensity during treadmill running. Twelve male runners (24.6 +/- A 6.3 years; 172 +/- A 8.0 cm and 62.6 +/- A 6.1 kg) performed three lactate minimum tests involving passive (LMT(P)) and active recoveries at 30%vVO(2max) (LMT(A30)) and 50%vVO(2max) (LMT(A50)) in the 8-min period following initial sprints. During subsequent graded exercise, lactate minimum speed and VO(2) in LMT(A50) (12.8 +/- A 1.5 km h(-1) and 40.3 +/- A 5.1 ml kg(-1) min(-1)) were significantly lower (P < 0.05) than those in LMT(A30) (13.3 +/- A 1.6 km h(-1) and 42.9 +/- A 5.3 ml kg(-1) min(-1)) and LMT(P) (13.8 +/- A 1.6 km h(-1) and 43.6 +/- A 6.1 ml kg(-1) min(-1)). In addition, lactate minimum speed in LMT(A30) was significantly lower (P < 0.05) than that in LMT(P). These results suggest that lactate minimum intensity is lowered by active recovery after hyperlactemia induction in an intensity-dependent manner compared to passive recovery.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)