975 resultados para Análise Morfométrica 2D e 3D
Resumo:
The understanding of the geo-morphological characteristics allows the identification of flood areas and instability slopes among others important features for land use planning. The study of the hydrological net and the analysis of morphometric parameters help in the geomorphologic characterization, providing specific physics indicators that quantify the risks for environmental damages. The present work used Geographic Information Systems (GIS) and carried out the morphometric analysis of two watersheds in the Alto Rio Sorocaba, municipality of Ibiuna (SP). Using digitalized topographic bases in the scale 1:50,000, the main morphometric parameters were extracted and the Digital Elevation Model (DEM) was obtained. Hence the slope, ground illumination, hill orientation and relief feature maps were elaborated. The characteristics for the two watersheds were quite similar, both have low risks for floods and landslides. Therefore, the concave feature is the predominant hill shape for both watersheds. The morphometric parameters directly related to the river density of the watersheds showed some differences, because the Sorocabuçú watershed presents higher value, resulting in a higher level of relief development. Thus, with this characterization it is possible to provide subsidies for environmental planning actions to the area.
Resumo:
The real role of renal transplantation in hepatic fi brosis progression caused by hepatitis C virus is still unpredictable. Histological evaluation of the liver is the best form to estimate fi brosis evolution, although semiquantitative analysis carries important limitations. Objective: To apply a morphometric quantitative assay on hepatic fi brosis progression in renal recipients with hepatits C. Methods: Thirty patients were initially evaluated, but only seven were included. They underwent the fi rst biopsy near the transplantation date and the second biopsy at least 4 years later. The immunosuppressant therapy adopted in all cases was azatioprine and micofenolate. Fibrosis progression rate (FPR) was calculated before and after the surgery date in each patient according to Metavir score and morphometric analysis. Results: The FPR calculated by Metavir score showed no statistical difference between pre- and post-transplantation (p=0.9). The FPR calculated by the morphometric analysis was 0.58 ± 0.78 before transplantation and 3.0 ± 3.3 after the surgery, with statistical signi- fi cance between these values (p=0.0026). Conclusion: In the sample assessed, the progression of hepatic fi brosis was documented and quantifi ed only by the morphometric analysis, which is as a promising approach to histological evaluation of these patients.
Resumo:
The morphometric study in watersheds is a key part to managing watersheds, because from the morphometric indices can determine the risks and potential of each watershed and assess environmental impacts on them generated mainly by human activities. This study aimed to characterize the watershed of the river Verissimo, located in the municipality of Verissimo - MG, analyze morphometric indices and propose how best to use the soil to minimize erosion impacts to resources hídricos.Foi used digital charts 1:100,000 scale and AutoCAD software for the quantification of vector data. The watershed has an area of 146.055 km2 , 55.902 km perimeter. According to the morphometric indices is considered 5th order, highly branched, slightly elongated format of little risk to floods occur, its main channel corresponds to 28.541 kilometers and has undulated, with an average slope of 8.59%. Through the results of morphometric indices and roughness coefficient, shows the potential of watershed land use on pastures for livestock, and soil conservation practices and water to minimize the impacts of erosion and contamination of water resources.
Resumo:
The morphometric characterization of watersheds is of great importance in assisting the planning of these areas to preserve the environment and maintain the quantity and quality of water production. The aim of this study was to characterize the morphology and simulate the areas of permanent preservation according to the Brazilian Forest Code of watershed of the Água-Fria stream. The studied area is located in the municipality of Bofete-SP, between the geographic coordinates: 48° 09' 30" to 48° 18' 30" longitude (WGr) and 22° 58' 30" to 23° 04' 30" latitude S. The results showed a 5th order micro watershed with an area of 152.43 km2 and low drainage density of 1.04 km/km2. Circularity was 0.51 and form factor was 0.41, which is considered low, and therefore with an oblong/oval shape. The sinuosity index of 1.29 revealed a tendency of rectilinear channels with compactness coefficient value of 1.38 and distance of runoff flow of 520m. Simulation of areas of permanent preservation shows an ideal model as the way springs and watercourses should be protected according to the Brazilian Forest Code, amounting to an area of 10.02 km2.
Resumo:
Objectives: The objective of this study is to compare subjective image quality and diagnostic validity of cone-beam CT (CBCT) panoramic reformatting with digital panoramic radiographs. Materials and methods: Four dry human skulls and two formalin-fixed human heads were scanned using nine different CBCTs, one multi-slice CT (MSCT) and one standard digital panoramic device. Panoramic views were generated from CBCTs in four slice thicknesses. Seven observers scored image quality and visibility of 14 anatomical structures. Four observers repeated the observation after 4 weeks. Results: Digital panoramic radiographs showed significantly better visualization of anatomical structures except for the condyle. Statistical analysis of image quality showed that the 3D imaging modalities (CBCTs and MSCT) were 7.3 times more likely to receive poor scores than the 2D modality. Yet, image quality from NewTom VGi® and 3D Accuitomo 170® was almost equivalent to that of digital panoramic radiographs with respective odds ratio estimates of 1.2 and 1.6 at 95% Wald confidence limits. A substantial overall agreement amongst observers was found. Intra-observer agreement was moderate to substantial. Conclusions: While 2D-panoramic images are significantly better for subjective diagnosis, 2/3 of the 3D-reformatted panoramic images are moderate or good for diagnostic purposes. Clinical relevance: Panoramic reformattings from particular CBCTs are comparable to digital panoramic images concerning the overall image quality and visualization of anatomical structures. This clinically implies that a 3D-derived panoramic view can be generated for diagnosis with a recommended 20-mm slice thickness, if CBCT data is a priori available for other purposes.
Resumo:
Numerical modelling was performed to study the dynamics of multilayer detachment folding and salt tectonics. In the case of multilayer detachment folding, analytically derived diagrams show several folding modes, half of which are applicable to crustal scale folding. 3D numerical simulations are in agreement with 2D predictions, yet fold interactions result in complex fold patterns. Pre-existing salt diapirs change folding patterns as they localize the initial deformation. If diapir spacing is much smaller than the dominant folding wavelength, diapirs appear in fold synclines or limbs.rnNumerical models of 3D down-building diapirism show that sedimentation rate controls whether diapirs will form and influences the overall patterns of diapirism. Numerical codes were used to retrodeform modelled salt diapirs. Reverse modelling can retrieve the initial geometries of a 2D Rayleigh-Taylor instability with non-linear rheologies. Although intermediate geometries of down-built diapirs are retrieved, forward and reverse modelling solutions deviate. rnFinally, the dynamics of fold-and-thrusts belts formed over a tilted viscous detachment is studied and it is demonstrated that mechanical stratigraphy has an impact on the deformation style, switching from thrust- to folding-dominated. The basal angle of the detachment controls the deformation sequence of the fold-and-thrust belt and results are consistent with critical wedge theory.rn
Resumo:
The purpose of this study was to evaluate whether measurements on conventional cephalometric radiographs are comparable with 3D measurements on 3D models of human skulls, derived from cone beam CT (CBCT) data. A CBCT scan and a conventional cephalometric radiograph were made of 40 dry skulls. Standard cephalometric software was used to identify landmarks on both the 2D images and the 3D models. The same operator identified 17 landmarks on the cephalometric radiographs and on the 3D models. All images and 3D models were traced five times with a time-interval of 1 week and the mean value of repeated measurements was used for further statistical analysis. Distances and angles were calculated. Intra-observer reliability was good for all measurements. The reproducibility of the measurements on the conventional cephalometric radiographs was higher compared with the reproducibility of measurements on the 3D models. For a few measurements a clinically relevant difference between measurements on conventional cephalometric radiographs and 3D models was found. Measurements on conventional cephalometric radiographs can differ significantly from measurements on 3D models of the same skull. The authors recommend that 3D tracings for longitudinal research are not used in cases were there are only 2D records from the past.
Resumo:
Cord entanglement affects the majority of monoamniotic (MA) twins, accounting for the high proportion of intrauterine deaths of MA twins, and it is often present from early gestation. 3D ultrasound can be used to acquire volume data comprising information on umbilical colour Doppler flow, providing a very graphic depiction of cord entanglement. We have used 2D, "conventional" and a novel 3D display of colour Doppler ultrasound showing cord entanglement.
Resumo:
Recent developments in the area of interactive entertainment have suggested to combine stereoscopic visualization with multi-touch displays, which has the potential to open up new vistas for natural interaction with interactive three-dimensional (3D) applications. However, the question arises how the user interfaces for system control in such 3D setups should be designed in order to provide an effective user experience. In this article we introduce 3D GUI widgets for interaction with stereoscopic touch displays. The design of the widgets was inspired to skeuomorphism and affordances in such a way that the user should be able to operate the virtual objects in the same way as their real-world equivalents. We evaluate the developed widgets and compared them with their 2D counterparts in the scope of an example application in order to analyze the usability of and user behavior with the widgets. The results reveal differences in user behavior with and without stereoscopic display during touch interaction, and show that the developed 2D as well as 3D GUI widgets can be used effectively in different applications.
Resumo:
Most organisms are able to synthesize vitamin C whereas humans are not. In order to contribute to the elucidation of the molecular working mechanism of vitamin C transport through biological membranes, we cloned, overexpressed, purified, functionally characterized, and 2D- and 3D-crystallized a bacterial protein (UraDp) with 29% of amino acid sequence identity to the human sodium-dependent vitamin C transporter 1 (SVCT1). Ligand-binding experiments by scintillation proximity assay revealed that uracil is a substrate preferably bound to UraDp. For structural analysis, we report on the production of tubular 2D crystals and present a first projection structure of UraDp from negatively stained tubes. On the other hand the successful growth of UraDp 3D crystals and their crystallographic analysis is described. These 3D crystals, which diffract X-rays to 4.2Å resolution, pave the way towards the high-resolution crystal structure of a bacterial homologue with high amino acid sequence identity to human SVCT1.
Resumo:
The bacterial phosphoenolpyruvate: sugar phosphotransferase system serves the combined uptake and phosphorylation of carbohydrates. This structurally and functionally complex system is composed of several conserved functional units that, through a cascade of phosphorylated intermediates, catalyze the transfer of the phosphate moiety from phosphoenolpyruvate to the substrate, which is bound to the integral membrane domain IIC. The wild-type glucose-specific IIC domain (wt-IIC(glc)) of Escherichia coli was cloned, overexpressed and purified for biochemical and functional characterization. Size-exclusion chromatography and scintillation-proximity binding assays showed that purified wt-IIC(glc) was homogenous and able to bind glucose. Crystallization was pursued following two different approaches: (i) reconstitution of wt-IIC(glc) into a lipid bilayer by detergent removal through dialysis, which yielded tubular 2D crystals, and (ii) vapor-diffusion crystallization of detergent-solubilized wt-IIC(glc), which yielded rhombohedral 3D crystals. Analysis of the 2D crystals by cryo-electron microscopy and the 3D crystals by X-ray diffraction indicated resolutions of better than 6Å and 4Å, respectively. Furthermore, a complete X-ray diffraction data set could be collected and processed to 3.93Å resolution. These 2D and 3D crystals of wt-IIC(glc) lay the foundation for the determination of the first structure of a bacterial glucose-specific IIC domain.