957 resultados para Amount hydrate-bound CH4


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hydrate Ridge off the coast of Oregon, USA, is a prime example for gas hydrate occurrences in active margin settings. It is part of the Cascadia Margin and was the focus of Ocean Drilling Program (ODP) Leg 204, which successfully recovered fluids from nine sites from the southern part of the ridge. Iodide concentrations in pore fluids associated with gas hydrates are strongly enhanced, by factors up to 5000 compared to seawater, which allows the use of this biophilic element as tracer for organic source regions. We applied the cosmogenic isotope 129I (T1/2=15.7 Ma) system to determine the age of the organic source formation responsible for the iodide enrichment. In all sites at ODP Leg 204, 129I/I ratios were found to decrease with depth to values around 250x10**-15, corresponding to minimum ages of 40 Ma, but in several sites, maxima in the 129I/I ratios point to the local addition of young iodide. The results indicate that a large amount of iodide was derived from deep accreted sediments of Eocene age, and that additional source regions provide iodide of Late Miocene age. The presence of old iodide in the pore waters suggests that fluid pathways are open to allow transport over large distances into the gas hydrate fields. The strong correlation between iodide and methane in hydrate fields coupled with the similarity in transport parameters in aqueous solutions suggests that a large fraction of methane in gas hydrates also has old sources and is transported into the present locations from source regions of Eocene age.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Residual concentrations and distributions of hydrocarbon gases from methane to n-heptane were measured in sediments at seven sites on Ocean Drilling Program (ODP) Leg 164. Three sites were drilled at the Cape Fear Diapir of the Carolina Rise, and one site was drilled on the Blake Ridge Diapir. Methane concentrations at these sites result from microbial generation which is influenced by the amount of pore-water sulfate and possible methane oxidation. Methane hydrate was found at the Blake Ridge Diapir site. The other hydrocarbon gases at these sites are likely the product of early microbial processes. Three sites were drilled on a transect of holes across the crest of the Blake Ridge. The base of the zone of gas-hydrate occurrence was penetrated at all three sites. Trends in hydrocarbon gas distributions suggest that methane is microbial in origin and that the hydrocarbon gas mixture is affected by diagenesis, outgassing, and, near the surface, by microbial oxidation. Methane hydrate was recovered at two of these three sites, although gas hydrate is likely present at all three sites. The method used here for determining amounts of residual hydrocarbon gases has its limitations and provides poor assessment of gas distributions, particularly in the stratigraphic interval below about ~100 mbsf. One advantage of the method, however, is that it yields sufficient quantities of gas for other studies such as isotopic determinations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Methane hydrates are present in marine seep systems and occur within the gas hydrate stability zone. Very little is known about their crystallite sizes and size distributions because they are notoriously difficult to measure. Crystal size distributions are usually considered as one of the key petrophysical parameters because they influence mechanical properties and possible compositional changes, which may occur with changing environmental conditions. Variations in grain size are relevant for gas substitution in natural hydrates by replacing CH4 with CO2 for the purpose of carbon dioxide sequestration. Here we show that crystallite sizes of gas hydrates from some locations in the Indian Ocean, Gulf of Mexico and Black Sea are in the range of 200-400 µm; larger values were obtained for deeper-buried samples from ODP Leg 204. The crystallite sizes show generally a log-normal distribution and appear to vary sometimes rapidly with location.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fractionation of the noble gases should occur during formation of a Structure I gas hydrate from water and CH4 such that CH4 hydrate is greatly enriched in Xenon. Noble gas concentrations and fractionation factors (F[4He], F[22Ne], F[86Kr], and F[132Xe] as well as R/Ra) were determined for eight gas hydrate specimens collected on Leg 164 to evaluate this theoretical possibility and to assess whether sufficient quantities of Xe are hosted in oceanic CH4 hydrate to account for Xe "missing" from the atmosphere. The simplest explanation for our results is that samples contain mixtures of air and two end-member gases. One of the end-member gases is depleted in Ne, but significantly enriched in Kr and Xe, as anticipated if the source of this gas involves fractionation during Structure I gas hydrate formation. However, although oceanic CH4 hydrate may be greatly enriched in Xe, simple mass balance calculations indicate that oceanic CH4 hydrate probably represents only a minor reservoir of terrestrial Xe. Noble gas analyses may play an important role in understanding the dynamics of gas hydrate reservoirs, but significantly more work is needed than presented here.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Site 996 is located above the Blake Diapir where numerous indications of vertical fluid migration and the presence of hydrate existed prior to Ocean Drilling Program (ODP) Leg 164. Direct sampling of hydrates and visual observations of hydrate-filled veins that could be traced 30-40 cm along cores suggest a connection between fluid migration and hydrate formation. The composition of pore water squeezed from sediment cores showed large variations due to melting of hydrate during core recovery and influence of saline water from the evaporitic diapir below. Analysis of water released during hydrate decomposition experiments showed that the recovered hydrates contained significant amounts of pore water. Solutions of the transport equations for deuterium (d2H) and chloride (Cl-) were used to determine maximum (d2H) and minimum (Cl-) in situ concentrations of these species. Minimum in situ concentrations of hydrate were estimated by combining these results with Cl- and d2H values measured on hydrate meltwaters and pore waters obtained by squeezing of sediments, by the means of a method based on analysis of distances in the two-dimensional Cl- d2H space. The computed Cl- and d2H distribution indicates that the minimum hydrate amount solutions are representative of the actual hydrate amount. The highest and mean hydrate concentrations estimates from our model are 31% and 10% of the pore space, respectively. These concentrations agree well with visual core observations, supporting the validity of the model assumptions. The minimum in situ Cl- concentrations were used to constrain the rates of upward fluid migration. Simulation of all available data gave a mean flow rate of 0.35 m/k.y. (range: 0.125-0.5 m/k.y.).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated gas hydrate in situ inventories as well as the composition and principal transport mechanisms of fluids expelled at the Amsterdam mud volcano (AMV; 2,025 m water depth) in the Eastern Mediterranean Sea. Pressure coring (the only technique preventing hydrates from decomposition during recovery) was used for the quantification of light hydrocarbons in near-surface deposits. The cores (up to 2.5 m in length) were retrieved with an autoclave piston corer, and served for analyses of gas quantities and compositions, and pore-water chemistry. For comparison, gravity cores from sites at the summit and beyond the AMV were analyzed. A prevalence of thermogenic light hydrocarbons was inferred from average C1/C2+ ratios <35 and d13C-CH4 values of -50.6 per mil. Gas venting from the seafloor indicated methane oversaturation, and volumetric gas-sediment ratios of up to 17.0 in pressure cores taken from the center demonstrated hydrate presence at the time of sampling. Relative enrichments in ethane, propane, and iso-butane in gas released from pressure cores, and from an intact hydrate piece compared to venting gas suggest incipient crystallization of hydrate structure II (sII). Nonetheless, the co-existence of sI hydrate can not be excluded from our dataset. Hydrates fill up to 16.7% of pore volume within the sediment interval between the base of the sulfate zone and the maximum sampling depth at the summit. The concave-down shapes of pore-water concentration profiles recorded in the center indicate the influence of upward-directed advection of low-salinity fluids/fluidized mud. Furthermore, the SO42- and Ba2+ pore-water profiles in the central part of the AMV demonstrate that sulfate reduction driven by the anaerobic oxidation of methane is complete at depths between 30 cm and 70 cm below seafloor. Our results indicate that methane oversaturation, high hydrostatic pressure, and elevated pore-water activity caused by low salinity promote fixing of considerable proportions of light hydrocarbons in shallow hydrates even at the summit of the AMV, and possibly also of other MVs in the region. Depending on their crystallographic structure, however, hydrates will already decompose and release hydrocarbon masses if sediment temperatures exceed ca. 19.3°C and 21.0°C, respectively. Based on observations from other mud volcanoes, the common occurrence of such temperatures induced by heat flux from below into the immediate subsurface appears likely for the AMV.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The geochemical cycling of barium was investigated in sediments of pockmarks of the northern Congo Fan, characterized by surface and subsurface gas hydrates, chemosynthetic fauna, and authigenic carbonates. Two gravity cores retrieved from the so-called Hydrate Hole and Worm Hole pockmarks were examined using high-resolution pore-water and solid-phase analyses. The results indicate that, although gas hydrates in the study area are stable with respect to pressure and temperature, they are and have been subject to dissolution due to methane-undersaturated pore waters. The process significantly driving dissolution is the anaerobic oxidation of methane (AOM) above the shallowest hydrate-bearing sediment layer. It is suggested that episodic seep events temporarily increase the upward flux of methane, and induce hydrate formation close to the sediment surface. AOM establishes at a sediment depth where the upward flux of methane from the uppermost hydrate layer counterbalances the downward flux of seawater sulfate. After seepage ceases, AOM continues to consume methane at the sulfate/methane transition (SMT) above the hydrates, thereby driving the progressive dissolution of the hydrates "from above". As a result the SMT migrates downward, leaving behind enrichments of authigenic barite and carbonates that typically precipitate at this biogeochemical reaction front. Calculation of the time needed to produce the observed solid-phase barium enrichments above the present-day depths of the SMT served to track the net downward migration of the SMT and to estimate the total time of hydrate dissolution in the recovered sediments. Methane fluxes were higher, and the SMT was located closer to the sediment surface in the past at both sites. Active seepage and hydrate formation are inferred to have occurred only a few thousands of years ago at the Hydrate Hole site. By contrast, AOM-driven hydrate dissolution as a consequence of an overall net decrease in upward methane flux seems to have persisted for a considerably longer time at the Worm Hole site, amounting to a few tens of thousands of years.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High acoustic seafloor-backscatter signals characterize hundreds of patches of methane-derived authigenic carbonates and chemosynthetic communities associated with hydrocarbon seepage on the Nile Deep Sea Fan (NDSF) in the Eastern Mediterranean Sea. During a high-resolution ship-based multibeam survey covering a ~ 225 km**2 large seafloor area in the Central Province of the NDSF we identified 163 high-backscatter patches at water depths between 1500 and 1800 m, and investigated the source, composition, turnover, flux and fate of emitted hydrocarbons. Systematic Parasound single beam echosounder surveys of the water column showed hydroacoustic anomalies (flares), indicative of gas bubble streams, above 8% of the high-backscatter patches. In echosounder records flares disappeared in the water column close to the upper limit of the gas hydrate stability zone located at about 1350 m water depth due to decomposition of gas hydrate skins and subsequent gas dissolution. Visual inspection of three high-backscatter patches demonstrated that sediment cementation has led to the formation of continuous flat pavements of authigenic carbonates typically 100 to 300 m in diameter. Volume estimates, considering results from high-resolution autonomous underwater vehicle (AUV)-based multibeam mapping, were used to calculate the amount of carbonate-bound carbon stored in these slabs. Additionally, the flux of methane bubbles emitted at one high-backscatter patch was estimated (0.23 to 2.3 × 10**6 mol a**-1) by combined AUV flare mapping with visual observations by remotely operated vehicle (ROV). Another high-backscatter patch characterized by single carbonate pieces, which were widely distributed and interspaced with sediments inhabited by thiotrophic, chemosynthetic organisms, was investigated using in situ measurements with a benthic chamber and ex situ sediment core incubation and allowed for estimates of the methane consumption (0.1 to 1 × 10**6 mol a**-1) and dissolved methane flux (2 to 48 × 10**6 mol a**-1). Our comparison of dissolved and gaseous methane fluxes as well as methane-derived carbonate reservoirs demonstrates the need for quantitative assessment of these different methane escape routes and their interaction with the geo-, bio-, and hydrosphere at cold seeps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the tradeoff between the amount of data stored and the repair bandwidth of an (n, k, d) regenerating code has been characterized under functional repair (FR), the case of exact repair (ER) remains unresolved. It is known that there do not exist ER codes which lie on the FR tradeoff at most of the points. The question as to whether one can asymptotically approach the FR tradeoff was settled recently by Tian who showed that in the (4, 3, 3) case, the ER region is bounded away from the FR region. The FR tradeoff serves as a trivial outer bound on the ER tradeoff. In this paper, we extend Tian's results by establishing an improved outer bound on the ER tradeoff which shows that the ER region is bounded away from the FR region, for any (n; k; d). Our approach is analytical and builds upon the framework introduced earlier by Shah et. al. Interestingly, a recently-constructed, layered regenerating code is shown to achieve a point on this outer bound for the (5, 4, 4) case. This represents the first-known instance of an optimal ER code that does not correspond to a point on the FR tradeoff.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New molecular beam scattering experiments have been performed to measure the total ( elastic plus inelastic) cross sections as a function of the velocity in collisions between water and hydrogen sulfide projectile molecules and the methane target. Measured data have been exploited to characterize the range and strength of the intermolecular interaction in such systems, which are of relevance as they drive the gas phase molecular dynamics and the clathrate formation. Complementary information has been obtained by rotational spectra, recorded for the hydrogen sulfide-methane complex, with a pulsed nozzle Fourier transform microwave spectrometer. Extensive ab initio calculations have been performed to rationalize all the experimental findings. The combination of experimental and theoretical information has established the ground for the understanding of the nature of the interaction and allows for its basic components to be modelled, including charge transfer, in these weakly bound systems. The intermolecular potential for H2S-CH4 is significantly less anisotropic than for H2O-CH4, although both of them have potential minima that can be characterized as `hydrogen bonded'.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resumen: Se propone utilizar un óxido como el Cr2O3 como catalizador ya que se ha determinado anteriormente, en la primera etapa de esta investigación, (“Estudio comparativo de la retención de SO2 sobre óxidos de metales de transición soportados en alúmina”), que la retención de SO2 sobre su superficie es un proceso de quimisorción con formación de especies sulfito superficiales sobre sitios básicos y un proceso de óxido reducción del ión metálico. Apoya este mecanismo el hecho de que la cantidad de SO2 adsorbido es función de la temperatura. La mayor eficiencia del Cr2O3 puede explicarse en base a sus propiedades superficiales, lo cual ha sido utilizado en la segunda etapa de reacción de reducción, ya que se ha completado la etapa inicial de quimisorción. En la segunda etapa de esta investigación (“Estudio de la reacción de reducción de SO2 con CH4 a altas temperaturas sobre catalizador de Cr2O3 soportado en alúmina”), se apuntó al estudio de un nuevo tipo de sinergia entre propiedades ácido-base y propiedades redox en una misma superficie. Esta tercera etapa apuntó a determinar la influencia que tiene el O2 en este proceso, ya que el O2 se encuentra presente en las chimeneas industriales en las condiciones de reacción entre el SO2 y el CH4, y produce modificaciones en los parámetros de reacción. Se experimentó con diferentes masas de catalizador y flujos de los distintos gases, y se estudió la influencia de la presencia de oxígeno en la reacción y particularmente con diferentes flujos del mismo, y la posibilidad de regeneración del catalizador.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The σD values of nitrated cellulose from a variety of trees covering a wide geographic range have been measured. These measurements have been used to ascertain which factors are likely to cause σD variations in cellulose C-H hydrogen.

It is found that a primary source of tree σD variation is the σD variation of the environmental precipitation. Superimposed on this are isotopic variations caused by the transpiration of the leaf water incorporated by the tree. The magnitude of this transpiration effect appears to be related to relative humidity.

Within a single tree, it is found that the hydrogen isotope variations which occur for a ring sequence in one radial direction may not be exactly the same as those which occur in a different direction. Such heterogeneities appear most likely to occur in trees with asymmetric ring patterns that contain reaction wood. In the absence of reaction wood such heterogeneities do not seem to occur. Thus, hydrogen isotope analyses of tree ring sequences should be performed on trees which do not contain reaction wood.

Comparisons of tree σD variations with variations in local climate are performed on two levels: spatial and temporal. It is found that the σD values of 20 North American trees from a wide geographic range are reasonably well-correlated with the corresponding average annual temperature. The correlation is similar to that observed for a comparison of the σD values of annual precipitation of 11 North American sites with annual temperature. However, it appears that this correlation is significantly disrupted by trees which grew on poorly drained sites such as those in stagnant marshes. Therefore, site selection may be important in choosing trees for climatic interpretation of σD values, although proper sites do not seem to be uncommon.

The measurement of σD values in 5-year samples from the tree ring sequences of 13 trees from 11 North American sites reveals a variety of relationships with local climate. As it was for the spatial σD vs climate comparison, site selection is also apparently important for temporal tree σD vs climate comparisons. Again, it seems that poorly-drained sites are to be avoided. For nine trees from different "well-behaved" sites, it was found that the local climatic variable best related to the σD variations was not the same for all sites.

Two of these trees showed a strong negative correlation with the amount of local summer precipitation. Consideration of factors likely to influence the isotopic composition of summer rain suggests that rainfall intensity may be important. The higher the intensity, the lower the σD value. Such an effect might explain the negative correlation of σD vs summer precipitation amount for these two trees. A third tree also exhibited a strong correlation with summer climate, but in this instance it was a positive correlation of σD with summer temperature.

The remaining six trees exhibited the best correlation between σD values and local annual climate. However, in none of these six cases was it annual temperature that was the most important variable. In fact annual temperature commonly showed no relationship at all with tree σD values. Instead, it was found that a simple mass balance model incorporating two basic assumptions yielded parameters which produced the best relationships with tree σD values. First, it was assumed that the σD values of these six trees reflected the σD values of annual precipitation incorporated by these trees. Second, it was assumed that the σD value of the annual precipitation was a weighted average of two seasonal isotopic components: summer and winter. Mass balance equations derived from these assumptions yielded combinations of variables that commonly showed a relationship with tree σD values where none had previously been discerned.

It was found for these "well-behaved" trees that not all sample intervals in a σD vs local climate plot fell along a well-defined trend. These departures from the local σD VS climate norm were defined as "anomalous". Some of these anomalous intervals were common to trees from different locales. When such widespread commonalty of an anomalous interval occurred, it was observed that the interval corresponded to an interval in which drought had existed in the North American Great Plains.

Consequently, there appears to be a combination of both local and large scale climatic information in the σD variations of tree cellulose C-H hydrogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The porous medium has an important effect on hydrate formation. In this paper, the formation process and the gas storage capacity of the methane hydrate were investigated with A-type zeolite and Sodium Dodecyl Sulfate (SDS) existing in the system. The results show that A-type zeolite can influence methane hydrate formation. At the temperature of 273.5 K and pressure of 8.3 MPa, the distilled water with A-type zeolite can form methane hydrate with gaseous methane in 12 hours. The formation process of the system with A-type zeolite was quite steady and the amount of A-type zeolite can influence the gas storage capacity significantly. The adding of A-type zeolite with 0.067 g.(g water)(-1) into 2 x 10(-3) g.g(-1) SDS-water solution can increase the gas storage capacity, and the maximum increase rate was 31%. Simultaneously the promotion effect on hydrate formation of 3A-type zeolite is much more obvious than that of 5A-type zeolite when the water adding amounts are 0.033 g.g(-1) and 0.067 g.g(-1) at the experimental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural gas hydrate (NGH) reservoirs have been considered as a substantial future clean energy resource and how to recover gas from these reservoirs feasibly and economically is very important. Microwave heating will be taken as a promising method for gas production from gas hydrates for its advantages of fast heat transfer and flexible application. In this work, we investigate the formation/decomposition behavior of natural gas hydrate with different power of microwave (2450MHZ), preliminarily analyze the impact of microwave on phase equilibrium of gas hydrate,and make calculation based on van der Waals-Platteeuw model. It is found that microwave of a certain amount of power can reduce the induction time and sub-cooling degree of NGH formation, e.g., 20W microwave power can lead to a decrease of about 3A degrees C in sub-cooling degree and the shortening of induction time from 4.5 hours to 1.3 hours. Microwave can make rapid NGH decomposition, and water from NGH decomposition accelerates the decomposition of NGH with the decomposition of NGH. Under the same pressure, microwave can increase NGH phase equilibrium temperature. Different dielectric properties of each composition of NGH may cause a distinct difference in temperature in the process of NGH decomposition. Therefore, NGH decomposition by microwave can be affected by many factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The replacement of CH4 from its hydrate in quartz sand with 90:10, 70:30, and 50:50 (W-CO2:W-H2O) carbon dioxide-in-water (C/W) emulsions and liquid CO2 has been performed in a cell with size of empty set 36 x 200 mm. The above emulsions were formed in a new emulsifier, in which the temperature and pressure were 285.2 K and 30 MPa, respectively, and the emulsions were stable for 7-12 h. The results of replacing showed that 13.1-27.1%, 14.1-25.5%, and 14.6-24.3% of CH4 had been displaced from its hydrate with the above emulsions after 24-96 It of replacement, corresponding to about 1.5 times the CH4 replaced with high-pressure liquid CO2. The results also showed that the replacement rate of CH4 with the above emulsions and liquid CO2 decreased from 0.543, 0.587, 0.608, and 0.348 1/h to 0.083, 0.077, 0.069, and 0.063 1/h with the replacement time increased from 24 to 96 h. It has been indicated by this study that the use of CO2 emulsions is advantageous compared to the use of liquid CO2 in replacing CH4 from its hydrate.