997 resultados para Amorphous material
Resumo:
Honey is rich in sugar content and dominated by fructose and glucose that make honey prone to crystallize during storage. Due to honey composition, the anhydrous glass transition temperature of honey is very low that makes honey difficult to dry alone and drying aid or filler is needed to dry honey. Maltodextrin is a common drying aid material used in drying of sugar-rich food. The present study aims to study the processing of honey powder by vacuum drying method and the impact of drying process and formulation on the stability of honey powder. To achieve the objectives, the series of experiments were done: investigating of maltodextrin DE 10 properties, studying the effect of drying temperature, total solid concentration, DE value, maltodextrin concentration and anti-caking agent on honey powder processing and stability. Maltodextrin provide stable glass compared to lower molecular weight sugars. Dynamic Dew Point Isotherm (DDI) data could be used to determine amorphous content of a system. The area under the first derivative curve from DDI curve is equal to the amount of water needed by amorphous material to crystallize. The drying temperature affected the amorphous content of vacuum-dried honey powder. The higher temperature seemed to result in honey powder with more amorphous component. The ratio of maltodextrin affected more significantly the stability of honey powder compared to the treatments of total solids concentration, DE value and drying temperature. The critical water activity of honey powder was lower than water activity of the equilibrium water content corresponding to BET monolayer water content. Addition of anti-caking agent increased stability and flow-ability of honey powder. Addition of Calcium stearate could inhibit collapse of the honey powder during storage.
Resumo:
This article reports on a new and swift hydrothermal chemical route to prepare titanate nanostructures (TNS) avoiding the use of crystalline TiO2 as starting material. The synthesis approach uses a commercial solution of TiCl3 as titanium source to prepare an amorphous precursor, circumventing the use of hazardous chemical compounds. The influence of the reaction temperature and dwell autoclave time on the structure and morphology of the synthesised materials was studied. Homogeneous titanate nanotubes with a high length/diameter aspect ratio were synthesised at 160 degrees C and 24 h. A band gap of 3.06 +/- 0.03 eV was determined for the TNS samples prepared in these experimental conditions. This value is red shifted by 0.14 eV compared to the band gap value usually reported for the TiO2 anatase. Moreover, such samples show better adsorption capacity and photocatalytic performance on the dye rhodamine 6G (R6G) photodegradation process than TiO2 nanoparticles. A 98% reduction of the R6G concentration was achieved after 45 min of irradiation of a 10 ppm dye aqueous solution and 1 g L-1 of TNS catalyst.
Resumo:
Jute fiber is the second most common natural cellulose fiber worldwide, especially in recent years, due to its excellent physical, chemical and structural properties. The objective of this paper was to investigate: the thermal degradation of in natura jute fiber, and the production and characterization of the generated activated carbon. The production consisted of carbonization of the jute fiber and activation with steam. During the activation step the amorphous carbon produced in the initial carbonization step reacted with oxidizing gas, forming new pores and opening closed pores, which enhanced the adsorptive capacity of the activated carbon. N2 gas adsorption at 77K was used in order to evaluate the effect of the carbonization and activation steps. The results of the adsorption indicate the possibility of producing a porous material with a combination of microporous and mesoporous structure, depending on the parameters used in the processes, with resulting specific surface area around 470 m2.g-1. The thermal analysis indicates that above 600°C there is no significant mass loss.
Resumo:
The possibility of producing valued devices from low cost natural resources is a subject of broad interest. The present study explores the preparation and characterization of silk fibroin dense membranes using waste silk fibers from textile processing. Morphology, crystallinity, thermal resistance and cytotoxicity of membranes as well as the changes on the secondary structure of silk fibroin were analyzed after undergoing treatment with ethanol. Membranes presented amorphous patterns as determined via X-ray diffraction. The secondary structure of silk fibroin on dense membranes was either random coil (silk I) or p-sheet (silk II), before and after ethanol treatment, respectively. The sterilized membranes presented no cytotoxicity to endothelial cells during in vitro assays. This fact stresses the material potential to be used in the fabrication of biomaterials, as coatings of cardiovascular devices and as membranes for wound dressing or drug delivery systems. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Diamond-like carbon (DLC), also known as amorphous hydrogenated carbon (a-C:H), are a class of materials with excellent mechanical, tribological and biological properties. When the DLC films are enhanced with other elements, all of these properties can be changed within a certain range. In this work, reactive magnetron sputtering was used to deposit W-DLC (hydrogenated tungsten carbide) films on Ti6A14V (implant material). Many films were made using pure tungsten (99.99%) target and different plasmas processes, with different ratio among argon and methane. It was possible to change the films composition (from pure amorphous carbon to carbon enhanced with tungsten) according to ratio of argon and methane plasma. Between all films processed, the carbon films enhanced with tungsten showed good results in the ""in vitro"" cytotoxicity testing. Raman spectroscopy was used to analyze the chemical bonds kinds and the chemical bonds quantities. The Rutherford Back Scattering (RBS) was used to analyze the films compositions. The chemical inertness was analyzed by scanning voltametry. W-DLC thin films obtained in these processes have low roughness, high chemical resistance, good adhesion and show a high biocompatibility, when compared with common DLC thin films. Hence we have concluded that the tungsten concentrations in the DLC films make an important role to improve the properties of the DLC layers. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
New hybrid composites based on mesostructured V(2)O(5) containing intercalated poly(ethylene oxide), poly-o-methoxyaniline and poly(ethylene oxide)/poly-o-methoxyaniline were prepared. The results suggest that the polymers were intercalated into the layers of the mesostructured V(2)O(5). Electrochemical studies showed that the presence of both polymers in the mesostructured V(2)O(5) (ternary hybrid) leads to an increase in total charge and stability after several cycles compared with binary hybrid composites. This fact makes this material a potential component as cathode for lithium ion intercalation and further, a promising candidate for applications in batteries.
Resumo:
The effect of pore structure on the behavior of lithium intercalation into an electrode containing porous V(2)O(5) film has been investigated and compared with the electrode containing a non-porous V(2)O(5) film. X-ray diffraction patterns indicate a lamellar structure for both materials. Nitrogen adsorption isotherms, t-plot method, and Scanning Electronic Microscopy show that the route employed for the preparation of mesoporous V(2)O(5) was successful. The electrochemical performance of these matrices as lithium intercalation cathode materials was evaluated. The porous material reaches stability after several cycles more easily compared with the V(2)O(5) xerogel. Lithium intercalation into the porous V(2)O(5) film electrode is crucially influenced by pore surface and film surface irregularity, in contrast with the non-porous surface of the V(2)O(5) xerogel.
Resumo:
Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
O presente trabalho, realizado no âmbito da Tese de Mestrado, tem como principal objectivo estudar as características pozolânicas dos materiais da zona de Arganil para substituição parcial do cimento Portland com o objectivo de intensificar certas qualidades devido à diminuição da porosidade do betão. Estas qualidades são interessantes quando se procura maior durabilidade. Para tal, foram realizados diversos ensaios para a caracterização física, química e mineralógica dos produtos. Os metacaulinos utilizados foram obtidos de amostras de argila submetidas a calcinação (750oC, durante uma hora), processo que permitiu a desidroxilação quase total da matéria-prima, transformando esta numa fase amorfa e irreversível, com propriedades pozolânicas. São apresentados os resultados dos ensaios de caracterização da matéria-prima, das condições de calcinação e do produto resultante da desidroxilação, nomeadamente a determinação da pozolanicidade e superfície específica e das características fundamentais para a aplicabilidade do produto. Descreve ainda o emprego do metacaulino em betões de resistência convencional. Estudou-se a influência do emprego do metacaulino (15% de substituição de cimento, em massa) na resistência à flexão e à compressão (aos 28 dias) em argamassas e o emprego de metacaulino (10%, 15% e 20% de substituição de cimento, em massa) na resistência à compressão (3, 7 e 28 dias) no betão.
Resumo:
Agências Financiadoras: Fundação para a Ciência e a Tecnologia - PTDC/FIS/102127/2008 e PTDC/FIS/102127/2008 e SFRH/BPD/78871/2011; Spanish Ministerio de Ciencia e Innovacion - FUNCOAT-CSD2008-00023-CONSOLIDER; Instituto Superior Técnico;
Resumo:
Microstructural and magnetic measurements of the evolution by heat treatment of initially amorphous Nd16Fe76B8 alloys prepared by melt spinning are presented. Evidence of magnetic hardening above a threshold temperature induced by magnetic isolation of the Nd2Fe14B grains is provided. A thermodynamic and kinetic explanation of local melting of the intergranular nanostructured Nd¿rich eutectic phase at temperatures below 900 K based on capillary effects is presented. A subsequent Ostwald ripening process moves Nd to wet intimately the hard magnetic grains, becoming, on cooling, a real paramagnetic isolating thin film (~2.5 nm). By using a simple analogy, it is shown that the switching magnetization field in a single¿domain crystal can be drastically affected through the exchange coupling to neighboring grains with different orientation of the easy axis. This effect should be important enough to reinforce the coercive field of polycrystalline hard magnetic materials and explains the observed enhancement from 0.9 to 1.9 T.
Resumo:
Amorphous and nanocrystalline silicon films obtained by Hot-Wire Chemical Vapor Deposition have been incorporated as active layers in n-type coplanar top gate thin film transistors deposited on glass substrates covered with SiO 2. Amorphous silicon devices exhibited mobility values of 1.3 cm 2 V - 1 s - 1, which are very high taking into account the amorphous nature of the material. Nanocrystalline transistors presented mobility values as high as 11.5 cm 2 V - 1 s - 1 and resulted in low threshold voltage shift (∼ 0.5 V).
Resumo:
The influence of radio frequency (rf) power and pressure on deposition rate and structural properties of hydrogenated amorphous silicon (a-Si:H) thin films, prepared by rf glow discharge decomposition of silane, have been studied by phase modulated ellipsometry and Fourier transform infrared spectroscopy. It has been found two pressure regions separated by a threshold value around 20 Pa where the deposition rate increases suddenly. This behavior is more marked as rf power rises and reflects the transition between two rf discharges regimes. The best quality films have been obtained at low pressure and at low rf power but with deposition rates below 0.2 nm/s. In the high pressure region, the enhancement of deposition rate as rf power increases first gives rise to a reduction of film density and an increase of content of hydrogen bonded in polyhydride form because of plasma polymerization reactions. Further rise of rf power leads to a decrease of polyhydride bonding and the material density remains unchanged, thus allowing the growth of a-Si:H films at deposition rates above 1 nm/s without any important detriment of material quality. This overcoming of deposition rate limitation has been ascribed to the beneficial effects of ion bombardment on the a-Si:H growing surface by enhancing the surface mobility of adsorbed reactive species and by eliminating hydrogen bonded in polyhydride configurations.
Resumo:
The obtention of silica and cyclodextrin hybrid materials was accomplished by refluxing them in xylol using citric acid as a binding agent. The materials were characterized by infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, and elemental analysis. Evidence for the docking of cyclodextrins α and γ was substantiated based on the variation in band intensity for groups such as ≡Si-OH. Additional docking evidence includes the displacement of some of the bands that are related to cyclodextrin such as the deformation of the C-H axial bond. The α and γ-CDSi materials were characterized as amorphous compounds. The products obtained in the synthesis showed changes in the decomposition temperatures of their isolated constituents, in which the mass of α and γ-CD docked to the silica surface gave the estimated values of 41% and 47%, respectively. The elemental constituents were shown to be consistent and close to their relative theoretical values. Thermogravimetric analysis showed that a reduction in the percentage of the hybrids was proportional to the amount of lost mass. This new material is an improvement over synthesized organosilane materials because the operator and the environment benefit from a less toxic methodology. In addition, the material has several potential applications in complexation systems with cyclodextrin.
Resumo:
Dans cette thèse nous démontrons le travail fait sur deux matériaux de cathodes pour les piles lithium-ion. Dans la première partie, nous avons préparé du phosphate de fer lithié (LiFePO4) par deux méthodes de lithiation présentées dans la littérature qui utilisent du phosphate de fer (FePO4) amorphe comme précurseur. Pour les deux méthodes, le produit obtenu à chaque étape de la synthèse a été analysé par la spectroscopie Mössbauer ainsi que par diffraction des rayons X (DRX) pour mieux comprendre le mécanisme de la réaction. Les résultats de ces analyses ont été publiés dans Journal of Power Sources. Le deuxième matériau de cathode qui a été étudié est le silicate de fer lithié (Li2FeSiO4). Une nouvelle méthode de synthèse a été développée pour obtenir le silicate de fer lithié en utilisant des produits chimiques peu couteux ainsi que de l’équipement de laboratoire de base. Le matériau a été obtenu par une synthèse à l’état solide. Les performances électrochimiques ont été obtenues après une étape de broyage et un dépôt d’une couche de carbone. Un essai a été fait pour synthétiser une version substituée du silicate de fer lithié dans le but d’augmenter les performances électrochimiques de ce matériau.