992 resultados para Ammonium sulfate


Relevância:

60.00% 60.00%

Publicador:

Resumo:

对15株白腐真菌进行了以玉米秸秆为基质的初步筛选,从中获得一株选择性系数较高的菌株Y10,并对其降解玉米秸秆的情况进行了研究。结果表明,在30天的培养过程中菌株Y10对玉米秸秆降解的选择性系数都大于1,第15天选择性系数最高为3.88。对未经降解和降解过的玉米秸秆分别作了紫外光谱和红外光谱分析,结果表明,经该菌降解后玉米秸秆的化学成分发生了很大变化,且木质素的降解程度要大于纤维素的降解程度。对菌株Y10进行了ITS-5.8S rDNA序列鉴定,初步判定其为Cerrena sp.。 为了考查不同的外源添加物对菌株Y10降解玉米秸秆的影响,在以玉米秸秆为基质的固态发酵培养基中分别添加了7种金属离子、8种碳源、6种氮源。结果显示,这7种金属离子均能促进木质素的降解,并且一定浓度的某些离子明显抑制纤维素的降解;其中添加0.036%的MnSO4·H2O和0.36%的MgSO4·7H2O对纤维素降解的抑制作用比较强,降解率分别为0.96%和1.31%,木质素的选择性系数分别达到了34.40和20.17。8种碳源中除麦芽糖外都能促进木质素的降解,除微晶纤维素外都明显促进纤维素的降解。6种氮源中酒石酸铵、硫酸铵、草酸铵和氯化铵的添加都会使该菌生长变慢,而且氮源浓度越高菌丝生长越慢。外加碳源和金属离子对半纤维素降解和选择性系数的影响不大。 同时对菌株Y10在液态培养下产木质素降解酶的条件和培养基做了优化。结果表明,在初始产酶培养基中,菌株Y10的漆酶酶活在第10d达到最高,锰过氧化物酶酶活在第11d达到最高,基本上检测不到木质素过氧化物酶。菌株Y10产漆酶的最适温度为32℃,最适PH为6.0;产锰过氧化物酶的最适温度为32℃,最适PH为6.5。菌株Y10产漆酶的最佳碳源为甘露糖,最佳氮源为酒石酸铵,最适诱导剂VA浓度为3 mmol/L,最适表面活性剂TW-80浓度为1%。 利用响应面法对其产漆酶的培养基进行优化,优化后的培养基配方为葡萄糖10.00 g/L,酒石酸铵0.50 g/L,大量元素296.50 ml/L,微量元素100.00 ml/L,NTA 1.40 g/L,VA 5.00 mmol/L,吐温-80加入量为0.10%。进行了菌株Y10产漆酶的验证实验,实测酶活为5282.56 U/L,与预测酶活5162.73 U/L接近。在优化后培养基中,菌株Y10在第14 d达到生长的最高峰,第20 d时,漆酶酶活最高,为11325.00 U/L;第16 d时,锰过氧化物酶酶活最高,为30.77 U/L。 对菌株Y10的漆酶酶学性质做了初步的研究,结果显示,酶反应的最适温度为40℃-65℃,最适PH为3.0。在40℃,PH=3.0时,漆酶催化ABTS反应的米氏方程为 。 Fifteen white-rot fungi based on corn stalk were screened. One white-rot fungus Y10 with high selectivity value was obtained. The degradation of corn stalk was initially studied. The results indicated that the selectivity value was above 1 during the 30 day-cultivation and the highest was 3.88 after 15 days. The composition of untreated and treated stalk was analyzed through ultraviolet spectroscopy and infrared spectroscopy. It was found that the composition of treated stalk was greatly altered and the degree of the degradation of lignin is greater than the cellulose. Y10 was identified as Cerrena sp. by ITS -5.8S rDNA sequence analysis. The influence of metal ions, carbon sources and nitrogen sources on corn stalk degradation by white-rot fungus was studied. While all seven metal ions could promote lignin degradation, the cellulose degradation was best inhibited at certain ion concentrations. Notably, when 0.036% MnSO4·H2O and 0.36% MgSO4·7H2O were added into the medium, the cellulose degradation was restrained to the extents that the coefficients of lignin selectivity rose to 34.40 and 20.17 respectively. It was also found that all carbon sources except maltose can promote lignin degradation. The addition of carbon sources other than microcrystalline cellulose significantly promoted cellulose degradation. The addition of the nitrogen sources, ammonium tartrate, ammonium sulfate, oxalate, ammonium chloride, resulted in remarkable inhibition to mycelium growth; the larger the concentrations of nitrogen sources are, the slower the mycelium grew. The addition of carbon sources and metal ions had less impact on the degradation of hemicellulose and selectivity value. Meanwhile, we optimized the conditions and culture medium of the lignin-degrading enzyme production of strain Y10. The results showed that in the initial culture medium, the Lac activity was highest at the 10th day, the MnP activity was highest at the 11th day and the LiP could not be detected. The optimum condition of Lac was at temperature 32 and PH =6.0 and the optimum condition of MnP was at temperature 32 and PH =6.5. The optimum carbon source for Lac was seminose, the optimum nitrogen source was ammonium tartrate, the optimum content of VA was 3 mmol/L, the optimum content of TW-80 was 1%. PB and RSM were used to optimize the culture medium of laccase by white-rot fungus Y10. The optimum culture medium was consist of glucose 10.00 g/L, ammonium tartrate 0.50 g/L, macro elements 296.50 ml/L, trace elements 100.00 ml/L, NTA 1.40 g/L, VA 5.00 mmol/L, TW-80 0.10%. Under the optimal conditions, the activity of laccase was 5282.56 U/L and the experimental value agreed with the predicted value 5162.73 U/L. The biomass was highest at the 14th day, the Lac activity was highest at the 20th day, the MnP activity was highest at the 16th day. The results of the studies on the characteristics of Lac showed that the optimum temperature for Lac activity is 40℃-65℃ ; the optimum PH for Lac activity is 3.0 and under 40℃,PH=3.0, the Michaelis-menten equation of Lac catalized ABTS oxidation was .

Relevância:

60.00% 60.00%

Publicador:

Resumo:

红发夫酵母分离于北美西部高山地区和日本一些岛屿上落叶树的渗出液中,因其所产主要色素为在水产养殖、食品和医药工业有广阔应用前景的虾青素而成为研究的热点。本论文对红发夫酵母Phaffia rhodozyma 的生长特性、培养参数与培养基组分对生长和虾青素积累的影响及其优化、虾青素合成的调节控制、虾青素的提取测定及红发夫酵母耐高温菌种的诱变进行了系统的研究。 虾青素是红发夫酵母的胞内色素,要对其进行分析首先要对红发夫酵母进行破壁处理,实验发现二甲亚砜是最有效的破壁溶剂,用氯仿和丙酮可以有效地把类胡萝卜素从二甲亚砜破壁后的红发夫酵母细胞中提取出来。 在固定摇床转速为200 rpm,温度为20 ℃的条件下,当种龄为36 h,以10%的接种量接入装液量为30 mL的250 mL三角瓶,初始pH为5.5时最有利于红发夫酵母的生长及类胡萝卜素的合成。 本实验中红发夫酵母最佳利用碳、氮源分别为蔗糖和蛋白胨,但蛋白胨价格昂贵,不适宜作单一氮源,因此使用硫酸铵和酵母膏作为复合氮源。 本论文采用了BP神经网络结合遗传算法的方法来优化红发夫酵母的发酵培养基,得到红发夫酵母发酵培养基的最佳配比为:蔗糖45.10 g/L、硫酸铵3.00 g/L、硫酸镁0.80 g/L、磷酸二氢钾1.40 g/L、酵母膏3.00 g/L、氯化钙0.50 g/L,使用优化后的培养基发酵类胡萝卜素产量达到8.20 mg/L,干重达到9.47 g/L,类胡萝卜素的产量比起始培养基提高了95.90%,干重提高了89.40%。 从代谢途径出发对红发夫酵母合成虾青素调控调控,选择谷氨酸、乙醇、VB1作为添加剂,通过正交试验设计得出三者添加水平分别为0.2 g/L,0.1% (V/V),10 mg/L时,类胡萝卜素产量提高了25.73%,达到了10.31mg/L。 通过上述优化培养,本论文中红发夫酵母的虾青素产量从1.33 mg/L提高到9.12 mg/L,产量提高了6.86倍;总类胡萝卜素产量从4.23 mg/L提高到10.31 mg/L,产量提高了2.44倍;细胞干重从5.00 g/L提高到11.35 g/L,提高了2.27倍,总体提高效果显著。 红发夫酵母属于中低温菌,本论文采用紫外复合诱变的方式,通过高温筛选,得到一株能在35 ℃下能生长的突变株,但所产类胡萝卜素中虾青素所占比例很小,可能是诱变改变了红发夫酵母的代谢途径,阻断了虾青素的合成。 Phaffia rhodozyma is a heterobasidiomyceteous yeast that was originally isolated from the slime fluxes of brich tree wounds in mountain regions of northern Japan and southern Alaska. Phaffia rhodozyma produces astaxanthin as its principal carotenoid pigment, which has potential applications in acquaculture, food and pharmaceutical industry. This paper researched ways to break cell, analysis of astaxanthin, characteristics of growth, culture parameters and the effects of components of medium on growth and astaxanthin formation , optimization of culture medium, control of astaxanthin synthesis and mutagenesis of Phaffia rhodozyma. It is necessary to disrupt the yeast cell for extracting astaxanthin considering the yeast accumulating carotenoids in cell. Dimethyisulphoxide was the most effective solvent for breaking the yeast cell; acetone and chloroform were effective to extract carotenoids out of the disrupted cell. The optimum pH for growth and carotenoids synthesis is 5.5, the optimum medium volume is 30 mL (in 250 mL flask), the optimum culture time of inoculum is 36 h, the optimum inoculum concentration is 10%. The research on culture medium showed: sucrose is the best one of 6 carbon sources for growth and astaxanthin synthesis. Peptone is the best nitrogen source for growth and astaxanthin synthesis. Uniform Design was used for trial design of the formula medium components, then back-propagation neural network was established to modeling the relationships between the carotenoid yield and the concentration of medium components. Genetic algorithm (GA) was used for global optimization of the model. The optimum combination of the medium was obtained: sucrose 45.10 g/L, ammonium sulfate 3.00 g/L, magnesium sulfate 0.80 g/L, potassium dihydrogen phosphate 1.40 g/L, yeast extract 3.00 g/L, calcium chloride 0.50 g/L. The yield of carotenoid reached 8.20 mg/L, which was 95.90% higher than that of the original medium. Glu, VB1 and ethanol were selected as fermentation addictives, after Orthogonal Test, the carotenoid contents increased by 25.73% when adding 0.16 g/L Glu, VB1 10 mg/L and ethanol 0.1% (V/V). After the above optimization, the astaxanthin content increased 6.86 folds, which is 9.12 mg/L. The carotenoids content increased 2.44 folds, which is 10.31 mg/L. The biomass increased 2.27 folds, which is 11.35 g/L. Phaffia rhodozyma grows in the mild temperature range of 0 to 27 ℃, in this work, a thermotolerant mutant was selected through UV-irradiation. It can grows at 35 ℃, and showed increased carotenoid content. The optimal growth temperature for this mutant is 30 ℃. But the mutant can only produce carotenoids with little astaxanthin accumulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文结合我国燃料乙醇发展的方针政策,以酿酒酵母和运动发酵单胞菌为菌种研究其在非粮能源作物木薯中乙醇发酵的情况,为木薯原料更好地应用于生产中提供了理论依据。 酿酒酵母木薯高浓度乙醇发酵的研究。实验采用的木薯干淀粉含量约70-75%。以酿酒酵母为菌种进行高浓度乙醇发酵的工艺条件研究,最佳条件为:木薯干粉碎细度为35目,料水比1:2,α-淀粉酶用量0.09 KNU/g淀粉,蒸煮温度85 ℃,蒸煮时间15 min。采用30 ℃同步糖化发酵工艺,糖化酶用量为3.4 AGU/g淀粉,发酵时间30 h。在10 L发酵罐中,乙醇质量比达127.88 g/kg,发酵效率为88.28%,发酵强度4.263 g/kg/h,100 L中试研究中乙醇浓度为127.75 g/kg,发酵强度4.258 g/kg/h。利用高效液相色谱对发酵液中残糖进行了分析,证明葡萄糖、果糖等单糖已完全被菌体利用,剩余糖为二糖,三糖等不可发酵的低聚糖。 运动发酵单胞菌快速乙醇发酵的研究。对实验室保藏的8株运动发酵单胞菌进行比较,选择发酵速度最快的Zymomonas mobilis232B进行研究。该菌在纯葡萄糖中的最佳发酵条件为:葡萄糖浓度18%,起始pH 6-7,发酵温度30 ℃,发酵时间18 h,乙醇浓度88 g/kg。在以木薯为底物同步糖化快速乙醇发酵中,采用Full Factorial设计和最速上升实验确定了培养基成分中的2个显著性因子及其最适浓度:酵母粉4 g/kg,硫酸铵0.8 g/kg。在最适培养基条件下,对木薯料水比和糖化酶用量进行了优化,得到Z.mobilis232B木薯乙醇发酵最佳料水比1:3,糖化酶浓度4 AGU/g淀粉,乙醇发酵4.915 g/kg/h。利用高效液相色谱对发酵液中残糖进行了分析,剩余糖为二糖,三糖等,但成分较酵母发酵后复杂。 According to the fuel ethanol development plans and policies in our country, the ethanol production from cassava by Saccharomyces cerevisiae and Zymomonas mobilis was studied. It provided theoretical basis for ethanol fermentation by cassava in industry. Part 1 is the study of VHG (very high gravity) ethanol fermentation by Saccharomyces cerevisiae. The content of starch in cassava was 70-75%. Compared with the performances under different experimental conditions, the following optimal conditions for VHG fermentation were obtained: Granule size of dry cassava 35 mashes, hydromodulus of cassava to water at 1:2, α-amylase enzyme dosage 0.09 KNU/g starch, cooking temperature 85 ℃ for 15 min, using the SSF process (simultaneous saccharification and fermentation) and the amount of glucoamylase 3.4 AGU/g starch. Accordingly, the final ethanol concentration was up to 127.88 g/kg; the ethanol yield reached 88.28%, and ethanol productivity was 4.263 g/kg/h after 30 h. When the fermentation scale expanded to 100 L, the final ethanol concentration was 127.75 g/kg, and the ethanol productivity was 4.258 g/kg/h in 30 h. The residual sugar was analyzed by high performance liquid chromatography, and proved that there was no glucose and fructose. The residual reducing sugar was some unfermentable oligosaccharide Part 2 is the study of the rapid ethanol production by Zymomonas mobilis. Compare with other seven stains, Zymomonas mobilis 232B was selected for research. The optimum condition in glucose medium was as follow: glucose concentration 18%, initial pH 6-7, and fermentation temperature 30 ℃. The ethanol concentration was 88g/kg in 18 h. After that, rapid ethanol production from cassava in SSF by Zymomonas mobilis 232B was studied. Through a series of experiments aided by Full Factorial Design and steepest ascent search, the optimal concentration yeast extract and ammonium sulfate were determined: 4 g/kg and 0.8 g/kg, each. Under optimum medium conditions, the optimal hydromodulus of cassava to water and glucoamylase dosages were obtained: hydromodulus of cassava to water at 1:3 and glucoamylase dosages 4 AGU/g starch. The ethanol production reached 4.915 g/kg/h. The residual sugar was analyzed by HPLC, and proved that the residual reducing sugar was some unfermentable oligosaccharide,but the components were more complex than that fermentation by Saccharomyces cerevisiae.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-solids, low-viscosity, stable polyacrylamide (PAM) aqueous dispersions were prepared by dispersion polymerization of acrylamide in aqueous solution of ammonium sulfate (AS) using Poly (sodium acrylic acid) (PAANa) as the stabilizer, ammonium persulfate (APS) or 2,2'-Azobis (N,N'-dimethyleneisobutyramidine) dihydrochloride (VA-044) as the initiator. The molecular weight of the formed PAM, ranged from 710, 000 g/mol to 4,330,000 g/mol, was controlled by the addition of sodium formate as a conventional chain-transfer agent. The progress of a typical AM dispersion polymerization was monitored with aqueous size exclusion chromatography. The influences, of the AS concentration, the poly(sodium acrylic acid) concentration, the initiator type and concentration, the chain-transfer agent concentration and temperature Oil the monomer conversion, the dispersion viscosity, the PAM molecular weight and distribution, the particle size and morphology were systematically investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-solids, low-viscosity, stable poly(acrylamide-co-acrylic acid) aqueous latex dispersions were prepared by the dispersion polymerization of acrylamide (AM) and acrylic acid (AA) in an aqueous solution of ammonium sulfate (AS) medium using anionic polyelectrolytes as stabilizers. The anionic polyelectrolytes employed include poly(2-acrylamido-2-methylpropanesulfonic acid sodium) (PAMPSNa) homopolymer and random copolymers of 2-acrylamido-2-methylpropanesulfonic acid sodium (AMPSNa) with methacrylic acid sodium (MAANa), acrylic acid sodium (AANa) or acrylamide (AM). The influences of stabilizer's structure, composition, molecular weight and concentration, AA/AM molar feed ratio, total monomer, initiator and aqueous solution of AS concentration, and stirring speed on the monomer conversion, the particle size and distribution, the bulk viscosity and stability of the dispersions, and the intrinsic viscosity of the resulting copolymer were systematically investigated. Polydisperse spherical as well as ellipsoidal particles were formed in the system. The broad particle size distributions indicated that coalescence of the particles takes place to a greater extent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the investigation of effect of KSCN on the partitioning of lysozyme in PEG2000/ammonium sulfate aqueous two-phase system, it was found that the KSCN could alter the pH difference between the two phases. and thus affect the partition of lysozyme. The relationship between partition coefficients of lysozyme and pH differences between two phases was discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of potassium thiocyanate on the partitioning of lysozyme and BSA in polyethylene glycol 2000/ammonium sulfate aqueous two-phase system has been investigated. As a result of the addition of potassium thiocyanate to the PEG/ammonium sulfate system, the PEG/mixed salts aqueous two-phase system was formed. It was found that the potassium thiocyanate could alter the pH difference between the two phases, and, thus, influence the partition coefficients of the differently charged proteins. The relationship between partition coefficient of the proteins and pH difference between two phases has been discussed. It was proposed that the pH difference between two phases could be employed as the measurement of electrostatic driving force for the partitioning of charged proteins in polyethylene glycol 2000/ammonium sulfate aqueous two-phase system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Superoxide dismutase (SOD; EC 1.15.1.1) is an enzyme that protects against oxidative stress from superoxide radicals in living cells. This enzyme had been isolated, purified and partially characterized from muscle tissue of the shrimp Macrobrachium nipponense. The purification was achieved by heat treatment, ammonium sulfate fractionated precipitation and column chromatograph on DEAE-cellulose 32. Some physiological and biochemical characterization of it was tested. The molecular weight of it was about 21.7 kDa, as judged by SDS-polyacrylamide gel electrophoresis. The purified enzyme had an absorption peak of 278 nm in ultraviolet region, and the enzyme remained stable at 25-45 degreesC within 90 min. However, it was rapidly inactivated at higher temperature. Treatment of the enzyme with 1 mM ZnCl2, SDS and 1 mM or 10 mM mercaptoethanol showed some increasing activity. However, the enzyme activity was obviously inhibited by 10 mM CaCl2, CuSO4, ZnCl2 and 1 mM CaCl2 and 10 mM K2Cr2O7. SOD activity did not show significantly variation after incubated with 1 mM CaCl2, EDTA and 10 MM SDS. The enzyme was insensitive to cyanide and contained 1.03 +/- 0.14 atoms of manganese per subunit shown in atomic absorption spectroscopy, which revealed that purified SOD was Mn superoxide dismutase. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine bacterium Vibrio sp. F-6, utilizing agarose as a carbon source to produce agarases, was isolated from seawater samples taken from Qingdao, China. Two agarases (AG-a and AG-b) were purified to a homogeneity from the cultural supernatant of Vibrio sp. F-6 through ammonium sulfate precipitation, Q-Sepharose FF chromatography, and Sephacryl S-100 gel filtration. Molecular weights of agarases were estimated to be 54.0 kDa (AG-a) and 34.5 kDa (AG-b) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH values for AG-a and AG-b were about 7.0 and 9.0, respectively. AG-a was stable in the pH range of 4.0-9.0 and AG-b was stable in the pH range of 4.0-10.0. The optimum temperatures of AG-a and AG-b were 40 and 55 degrees C, respectively. AG-a was stable at temperature below 50 degrees C. AG-b was stable at temperature below 60 degrees C. Zn2+, Mg2+ or Ca2+ increased AG-a activity, while Mn2+, Cu2+ or Ca2+ increased AG-b activity. However, Ag+, Hg2+, Fe3+, EDTA and SDS inhibited AG-a and AG-b activities. The main hydrolysates of agarose by AG-a were neoagarotetraose and neoagarohexaose. The main hydrolysates of agarose by AG-b were neoagarooctaose and neoagarohexaose. When the mixture of AG-a and AG-b were used, agarose was mainly degraded into neoagarobiose.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A pectinase was identified and isolated from a commercial Aspergillus niger pectinase preparation. The crude enzyme preparation, which was prepared by precipitation of the water extract of the culture of A. niger with ammonium sulfate, was further fractionated by three steps of chromatography, i. e., cation exchange, hydrophobic interaction and onion exchange, to obtain an electrophoretically homogeneous pectinase. The molecular weight of the purified enzyme was estimated by SDS-PAGE to be about 40.4 kDa under both nonreducing and reducing conditions, with the optimum pH at 5.0 and the optimum temperature at 36C. The enzyme was stable at temperatures below 35C. The partial N-terminal ammo acid sequence data analysis of the first 19 amina acids of the obtained pectinase revealed 94.7% and 89.5% homology with two reported pectinases from A. niger.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel lysozyme exhibiting antifungal activity and with a molecular mass of 14.4 kDa in SDS–polyacrylamide gel electrophoresis was isolated from mung bean (Phaseolus mungo) seeds using a procedure that involved aqueous extraction, ammonium sulfate precipitation, ion exchange chromatography on CM-Sephadex, and high-performance liquid chromatography on POROS HS-20. Its N-terminal sequence was very different from that of hen egg white lysozyme. Its pI was estimated to be above 9.7. The specific activity of the lysozyme was 355 U/mg at pH 5.5 and 30 °C. The lysozyme exhibited a pH optimum at pH 5.5 and a temperature optimum at 55 °C. It is reported herein, for the first time, that a novel plant lysozyme exerted an antifungal action toward Fusarium oxysporum, Fusarium solani, Pythium aphanidermatum, Sclerotium rolfsii, and Botrytis cinerea, in addition to an antibacterial action against Staphylococcus aureus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The FRAP reagent contains 2,4,6-tris(2-pyridyl)-s-triazine, which forms a blue-violet complex ion in the presence of ferrous ions. Although the FRAP (ferric reducing/antioxidant power) assay is popular and has been in use for many years, the correct molar extinction coefficient of this complex ion under FRAP assay conditions has never been published, casting doubt on the validity of previous calibrations. A previously reported value of 19.800 is an underestimate. We determined that the molar extinction coefficient was 21,140. The value of the molar extinction coefficient was also shown to depend on the type of assay and was found to be 22,230 under iron assay conditions, in good agreement with published data. Redox titration indicated that the ferrous sulfate heptahydrate calibrator recommended by Benzie and Strain, the FRAP assay inventors, is prone to efflorescence and, therefore, is unreliable. Ferrous ammonium sulfate hexahydrate in dilute sulfuric acid was a more stable alternative. Few authors publish their calibration data, and this makes comparative analyses impossible. A critical examination of the limited number of examples of calibration data in the published literature reveals only that Benzie and Strain obtained a satisfactory calibration using their method. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diverse parameters, including chaotropicity, can limit the function of cellular systems and thereby determine the extent of Earth's biosphere. Whereas parameters such as temperature, hydrophobicity, pressure, pH, Hofmeister effects, and water activity can be quantified via standard scales of measurement, the chao-/kosmotropic activities of environmentally ubiquitous substances have no widely accepted, universal scale. We developed an assay to determine and quantify chao-/kosmotropicity for 97 chemically diverse substances that can be universally applied to all solutes. This scale is numerically continuous for the solutes assayed (from +361kJkg-1mol-1 for chaotropes to -659kJkg-1mol-1 for kosmotropes) but there are key points that delineate (i) chaotropic from kosmotropic substances (i.e. chaotropes =+4; kosmotropes =-4kJkg-1mol-1); and (ii) chaotropic solutes that are readily water-soluble (log P<1.9) from hydrophobic substances that exert their chaotropic activity, by proxy, from within the hydrophobic domains of macromolecular systems (log P>1.9). Examples of chao-/kosmotropicity values are, for chaotropes: phenol +143, CaCl2 +92.2, MgCl2 +54.0, butanol +37.4, guanidine hydrochloride +31.9, urea +16.6, glycerol [>6.5M] +6.34, ethanol +5.93, fructose +4.56; for kosmotropes: proline -5.76, sucrose -6.92, dimethylsulphoxide (DMSO) -9.72, mannitol -6.69, trehalose -10.6, NaCl -11.0, glycine -14.2, ammonium sulfate -66.9, polyethylene glycol- (PEG-)1000 -126; and for relatively neutral solutes: methanol, +3.12, ethylene glycol +1.66, glucose +1.19, glycerol [<5M] +1.06, maltose -1.43 (kJkg-1mol-1). The data obtained correlate with solute interactions with, and structure-function changes in, enzymes and membranes. We discuss the implications for diverse fields including microbial ecology, biotechnology and astrobiology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new flow-injection analytical procedure is proposed for the determination of the total amount of polyphenols in wines; the method is based on the formation of a colored complex between 4-aminoantipyrine and phenols, in the presence of an oxidizing reagent. The oxidizing agents hexacyanoferrate(III), peroxodisulfate, and tetroxoiodate(VII) were tested. Batch trials were first performed to select appropriate oxidizing agents, pH, and concentration ratios of reagents, on the basis of their effect on the stability of the colored complex. Conditions selected as a result of these trials were implemented in a flow-injection analytical system in which the influence of injection volume, flow rate, and reaction- coil length, was evaluated. Under the optimum conditions the total amount of polyphenols, expressed as gallic acid, could be determined within a concentration range of 36 to 544 mg L–1, and with a sensitivity of 344 L mol–1 cm–1 and an RSD <1.1%. The reproducibility of analytical readings was indicative of standard deviations <2%. Interference from sugars, tartaric acid, ascorbic acid, methanol, ammonium sulfate, and potassium chloride was negligible. The proposed system was applied to the determination of total polyphenols in red wines, and enabled analysis of approximately 55 samples h–1. Results were usually precise and accurate; the RSD was <3.9% and relative errors, by the Folin–Ciocalteu method, <5.1%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHA) production using mixed microbial cultures (MMC) requires a multi-stage process involving the microbial selection of PHA-storing microorganisms, typically operated in sequencing batch reactors (SBR), and an accumulation reactor. Since low-cost renewable feedstocks used as process feedstock are often nitrogen-deficient, nutrient supply in the selection stage is required to allow for microbial growth. In this context, the possibility to uncouple nitrogen supply from carbon feeding within the SBR cycle has been investigated in this study. Moreover, three different COD:N ratios (100:3.79, 100:3.03 and 100:2.43) were tested in three different runs which also allowed the study of COD:N ratio on the SBR performance. For each run, a synthetic mixture of acetic and propionic acids at an overall organic load rate of 8.5 gCOD L-1 d-1 was used as carbon feedstock, whereas ammonium sulfate was the nitrogen source in a lab-scale sequence batch reactor (SBR) with 1 L of working volume. Besides, a sludge retention time (SRT) of 1 d was used as well as a 6 h cycle length. The uncoupled feeding strategy significantly enhanced the selective pressure towards PHA-storing microorganisms, resulting in a two-fold increase in the PHA production (up to about 1.3 gCOD L-1). A high storage response was observed for the two runs with the COD:N ratios (gCOD:gN) of 100:3.79 and 100:3.03, whereas the lowest investigated nitrogen load resulted in very poor performance in terms of polymer production. In fact, strong nitrogen limitation caused fungi to grow and a very poor storage ability by microorganisms that thrived in those conditions. The COD:N ratio also affected the polymer composition, indeed the produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) showed a variable HV content (1-20 %, w/w) among the three runs, lessening as the COD:N increased. This clearly suggests the possibility to use the COD:N ratio as a tool for tuning polymer properties regardless the composition of the feedstock.