970 resultados para Alpine swift
Resumo:
Background: Within the Coleoptera, the largest order in the animal kingdom, the exclusively herbivorous Chrysomelidae are recognized as one of the most species rich beetle families. The evolutionary processes that have fueled radiation into the more than thirty-five thousand currently recognized leaf beetle species remain partly unresolved. The prominent role of leaf beetles in the insect world, their omnipresence across all terrestrial biomes and their economic importance as common agricultural pest organisms make this family particularly interesting for studying the mechanisms that drive diversification. Here we specifically focus on two ecotypes of the alpine leaf beetle Oreina speciosissima (Scop.), which have been shown to exhibit morphological differences in male genitalia roughly corresponding to the subspecies Oreina speciosissima sensu stricto and Oreina speciosissima troglodytes. In general the two ecotypes segregate along an elevation gradient and by host plants: Oreina speciosissima sensu stricto colonizes high forb vegetation at low altitude and Oreina speciosissima troglodytes is found in stone run vegetation at higher elevations. Both host plants and leaf beetles have a patchy geographical distribution. Through use of gene sequencing and genome fingerprinting (AFLP) we analyzed the genetic structure and habitat use of Oreina speciosissima populations from the Swiss Alps to examine whether the two ecotypes have a genetic basis. By investigating a wide range of altitudes and focusing on the structuring effect of habitat types, we aim to provide answers regarding the factors that drive adaptive radiation in this phytophagous leaf beetle.Results: While little phylogenetic resolution was observed based on the sequencing of four DNA regions, the topology and clustering resulting from AFLP genotyping grouped specimens according to their habitat, mostly defined by plant associations. A few specimens with intermediate morphologies clustered with one of the two ecotypes or formed separate clusters consistent with habitat differences. These results were discussed in an ecological speciation framework.Conclusions: The question of whether this case of ecological differentiation occurred in sympatry or allopatry remains open. Still, the observed pattern points towards ongoing divergence between the two ecotypes which is likely driven by a recent shift in host plant use.
Resumo:
The 1:10,000 scale mapping of the southern part of the Aggtelek Plateau (Western Carpathians, Silica Nappe, NE Hungary) and the study of five sections revealed two Middle Triassic reef bodies. In the late Pelsonian the uniform Steinalm Platform was drowned and dissected due to the Reifling Event. A connection with the open sea was established, indicated by the appearance of gladigondolellid conodonts from the early Illyrian. Basins and highs were formed. In the NW part of the studied area lower - middle? Illyrian basinal carbonates were followed by a platform margin reef (early? - middle Illyrian; reef stage 1) developed on a morphological high. This is the oldest known Triassic platform margin reef within the Alpine-Carpathian region. The reef association is dominated by sphinctozoans and microproblematics. The fossils are characteristic of the Wetterstein - type reef communities. Differently from this in the SE part of the studied region a basin existed from the late Pelsonian until the early Ladinian. During the late Illyrian - early Ladinian, the reef prograded to the SE, and reef stage 2 was established. Meanwhile, on the NW part of the platform a lagoon was formed behind the reef. Based on our palaeontological study the stratigraphic range of Colospongia catenulata, Follicatena cautica, Solenolmia manon manon, Vesicocaulis oenipontanus must be extended down to the middle Illyrian. Synsedimentary tectonics were detected in the 1. Binodosus Subzone, 2. Trinodosus Zone - the most part of the Reitzi Zone, 3. Avisianum Subzone.
Resumo:
A methodology of exploratory data analysis investigating the phenomenon of orographic precipitation enhancement is proposed. The precipitation observations obtained from three Swiss Doppler weather radars are analysed for the major precipitation event of August 2005 in the Alps. Image processing techniques are used to detect significant precipitation cells/pixels from radar images while filtering out spurious effects due to ground clutter. The contribution of topography to precipitation patterns is described by an extensive set of topographical descriptors computed from the digital elevation model at multiple spatial scales. Additionally, the motion vector field is derived from subsequent radar images and integrated into a set of topographic features to highlight the slopes exposed to main flows. Following the exploratory data analysis with a recent algorithm of spectral clustering, it is shown that orographic precipitation cells are generated under specific flow and topographic conditions. Repeatability of precipitation patterns in particular spatial locations is found to be linked to specific local terrain shapes, e.g. at the top of hills and on the upwind side of the mountains. This methodology and our empirical findings for the Alpine region provide a basis for building computational data-driven models of orographic enhancement and triggering of precipitation. Copyright (C) 2011 Royal Meteorological Society .
Resumo:
Recent isotopic and biochronologic dating has demonstrated that the Gets nappe contains remnants of the oldest part of the oceanic crust of the Alpine Tethys. The ophiolites are associated with deep sea sediments, platform carbonates and continental crustal elements suggesting a transitional environment between continental and oceanic crust. Therefore, the ophiolites from the Gets nappe provide the opportunity to assess the nature of mantle source and the magma evolution during the final rifting stage of the European lithosphere. Trace clement analyses of mafic rocks can he divided into two sets: (1) P, Zr and Y contents are consistent with those of mid-ocean ridge basalts and REE patterns have a P-MORB affinity. (2) P,Zr Ti and Y contents are compatible with within-plate basalts and are characterized by REE spectra similar to that of T-MORB. Both have Nd isotopic compositions similar to those of synrift magma of the Red Sea and to the Rhine Graben. The model ages are in agreement with an LREE-enriched subcontinental mantle source derived from depleted mantle 800 to 900 Ma ago. Minor, trace element and Sm-Nd compositions suggest that these rocks are basaltic relies of an earliest stage of oceanic spreading i.e. an embryonic ocean. Comparison between REE patterns, Nd and Sr isotope compositions, isotopic and biochronologic ages from different Alpine Tethys ophiolites shows that samples with enriched LREE are from the older ophiolitic suites and are relies of the embryonic ocean floor. Later phases of ocean spreading are characterized by basalts that are depleted in LREE.
Resumo:
Species range shifts in response to climate and land use change are commonly forecasted with species distribution models based on species occurrence or abundance data. Although appealing, these models ignore the genetic structure of species, and the fact that different populations might respond in different ways because of adaptation to their environment. Here, we introduced ancestry distribution models, that is, statistical models of the spatial distribution of ancestry proportions, for forecasting intra-specific changes based on genetic admixture instead of species occurrence data. Using multi-locus genotypes and extensive geographic coverage of distribution data across the European Alps, we applied this approach to 20 alpine plant species considering a global increase in temperature from 0.25 to 4 °C. We forecasted the magnitudes of displacement of contact zones between plant populations potentially adapted to warmer environments and other populations. While a global trend of movement in a north-east direction was predicted, the magnitude of displacement was species-specific. For a temperature increase of 2 °C, contact zones were predicted to move by 92 km on average (minimum of 5 km, maximum of 212 km) and by 188 km for an increase of 4 °C (minimum of 11 km, maximum of 393 km). Intra-specific turnover-measuring the extent of change in global population genetic structure-was generally found to be moderate for 2 °C of temperature warming. For 4 °C of warming, however, the models indicated substantial intra-specific turnover for ten species. These results illustrate that, in spite of unavoidable simplifications, ancestry distribution models open new perspectives to forecast population genetic changes within species and complement more traditional distribution-based approaches.
Resumo:
In this paper, we perform a societal and economic risk assessment for debris flows at the regional scale, for lower Valtellina, Northern Italy. We apply a simple empirical debris-flow model, FLOW-R, which couples a probabilistic flow routing algorithm with an energy line approach, providing the relative probability of transit, and the maximum kinetic energy, for each cell. By assessing a vulnerability to people and to other exposed elements (buildings, public facilities, crops, woods, communication lines), and their economic value, we calculated the expected annual losses both in terms of lives (societal risk) and goods (direct economic risk). For societal risk assessment, we distinguish for the day and night scenarios. The distribution of people at different moments of the day was considered, accounting for the occupational and recreational activities, to provide a more realistic assessment of risk. Market studies were performed in order to assess a realistic economic value to goods, structures, and lifelines. As terrain unit, a 20 m x 20 m cell was used, in accordance with data availability and the spatial resolution requested for a risk assessment at this scale. Societal risk the whole area amounts to 1.98 and 4.22 deaths/year for the day and the night scenarios, respectively, with a maximum of 0.013 deaths/year/cell. Economic risk for goods amounts to 1,760,291 ?/year, with a maximum of 13,814 ?/year/cell.
Resumo:
Size-selective fishing, environmental changes and reproductive strategies are expected to affect life-history traits such as the individual growth rate. The relative contribution of these factors is not clear, particularly whether size-selective fishing can have a substantial impact on the genetics and hence on the evolution of individual growth rates in wild populations. We analysed a 25-year monitoring survey of an isolated population of the Alpine whitefish Coregonus palaea. We determined the selection differentials on growth rate, the actual change of growth rate over time and indicators of reproductive strategies that may potentially change over time. The selection differential can be reliably estimated in our study population because almost all the fish are harvested within their first years of life, i.e. few fish escape fishing mortality. We found a marked decline in average adult growth rate over the 25 years and a significant selection differential for adult growth, but no evidence for any linear change in reproductive strategies over time. Assuming that the heritability of growth in this whitefish corresponds to what was found in other salmonids, about a third of the observed decline in growth rate would be linked to fishery-induced evolution. Size-selective fishing seems to affect substantially the genetics of individual growth in our study population.
Resumo:
Located at the internal border of the Grand-Saint-Bernard Zone, the diorite and its aureole lie on top of intensively studied Alpine eclogitic units but this pluton, poorly studied yet, has kept locally almost undeformed. The pluton intruded, at similar to 360 Ma, country-rocks mostly composed of dark shales with Na2O > K2O and minor mafic intercalations of tholeiitic basalt affinity. This association is characteristic of the Vanoise (France) basement series, where available age determinations suggest an Early Paleozoic age. Parts of the pluton, and of its hornfels aureole that is evidenced here for the first time, in the Punta Bioula section of Valsavaranche valley (NW-Italy), have been well-preserved from the Alpine deformation. Syn-emplacement hardening, dehydration-induced, probably prevented strain-enhanced Alpine recrystallization. Magmatic rock-types range continuously from subordinate mafic types at SiO2 similar to 48%, of hornblendite with cumulative or appinite affinities, to the main body of quartz diorite to quartz monzonite (SiO2 up to 62%). P-T estimates for the pluton emplacement, based on the abundance of garnet in the hornfelses, using also zircon and apatite saturation thermometry and Al-in-hornblende barometry, suggest T similar to 800-950 degrees C and minimum P in the 0.2-0.5 GPa range, with records of higher pressure conditions (up to 1-2 GPa?) in hornblendite phlogopite-cored amphibole. The high-K, Na > K, calcalkaline geochemistry is in line with a destructive plate-margin setting. Based on major element data and radiogenic isotope signature (epsilon Nd-360 Ma from -1.2 to + 0.9, Sr-87/Sr-86(360 MA) from 0.7054 to 0.7063), the parental magmas are interpreted in terms of deep-seated metabasaltic partial melts with limited contamination from shallower sources, the low radiogenic Nd-content excluding a major contribution from Vanoise tholeiites. There is no other preserved evidence for Variscan magmatism of similar age and composition in the Western Alps, but probable analogs are known in the western and northern parts of French Massif Central. Regarding the Alpine tectonics, not only the age of the pluton and its host-rocks (instead of the Permo-Carboniferous age previously believed), but also its upper mylonitic contact, suggest revisions of the Alpine nappe model. The Cogne diorite allegedly constituted the axial part of the E-verging ``pli en retour [backfold] du Valsavaranche'', a cornerstone of popular Alpine structural models: in fact, the alleged fold limbs, as attested here by field and geochemical data, do not belong to the same unit, and the backfold hypothesis is unfounded. (C) 2012 Elsevier B.V. All rights reserved.