323 resultados para Alkylation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Friedel–Crafts alkylation of benzene with 1-decene was catalysed by a new family of liquid Lewis acids: liquid coordination complexes (LCCs). LCCs are prepared by mixing a metal halide (e.g. GaCl3) and a donor molecule (e.g. N,N-dimethylacetamide, urea, or trioctylphosphine oxide), with the metal halide typically used in excess. This leads to the formation of a eutectic mixture comprised of charged and neutral species in a dynamic equilibrium. GaCl3-based LCCs were used in catalytic amounts, giving high reaction rates under ambient conditions, with selectivities to 2-phenyldecane superior to those previously reported in the literature. The influence of reaction conditions and catalyst composition on the reaction rate and selectivity was investigated. Optimised reaction conditions were suggested. This exploratory study offers promise with regard to the development of safer, LCC-based alternatives to HF in industrial alkylations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminosilicate catalysts containing supported ZnCl2 and metal fluoride salts have been prepared using a sol-gel based route, tested and characterized. The activities of these ZnCl2 + metal fluoride catalysts, while greater than "Clayzic" (ZnCI2 supported on montmorillonite KIO) are not as good as supported ZnCl2 only supported on aluminosilicate. Alumina supports have also been prepared via a sol-gel route using various chemical additives to generate a mesoporous structure, loaded with ZnCl2 and tested for activity. The activities for these alumina-supported catalysts are also significantly higher than that of "Clayzic", an effective Friedel-Crafts catalyst. Characterizations of these two types of catalysts were done by magic angle spinning (MAS) NMR, diffuse reflectance infrared (DRIFT) spectroscopy and additionally for the alumina nitrogen adsorption studies were done. Supported aluminum trichloride was also investigated as an alternative to the traditional use of aluminum trichloride.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen bond assisted alkylation of phenols is compared with the classical base assisted reactions. The influence of solvents on the fluoride assisted reactions is discussed,· with emphasis on the localization of hydrogen bond charge density. Polar aprotic solvents such as DMF favour a-alkylation, and nonpolar aprotic solvents such as toluene favourC-alkylation of phenol. For more reactive and soluble fluorides, such as tetrabu~ylammoniumfluoride, the polar aprotic solvent favours a-alkylation and nonpolar aprotic solvent favours fluorination. Freeze-dried potassium fluoride is a better catalytic agent in hydrogen bond assisted alkylation reactions of phenol than the oven-dried fluoride. The presence of water in the alkylation reactions reduces the expected yield drastically. The tolerance of the reaction to water has also been studied. The use ofa phase transfer catalyst such as tetrabutylammonium bromide in the alkylation reactions of phenol in the presence of potassium fluoride is very effective under anhydrous conditions. Sterically hindered phenols such as 2,6-ditertiarybutyl-4-methyl phenol could not be alkylated even by using the more reactive fluorides, such as tetrabutylammonium fluoride in either polar or nonpolar aprotic solvents. Attempts were also made to alkylate phenols in the presence of triphenylphosphine oxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear alkylbenzene sulfonic acid, the largest-volume synthetic surfactant, in addition to its excellent performance , is important due to its biodegradable environmental friendliness, as it has a straight chain and is prepared by the sulphonation of linear alkylbenzenes (LAB). To ensure environmental protection, the commercial benzene alkylation catalysts HF or AICI3 are replaced and we have developed a clean LAB production process using a pillared clay catalyst capable of not only replacing the conventional homogeneous catalyst, but also having high selectivity for the best biodegradable 2-phenyl LAB isomer .Pillared clay catalysts having high Bronsted acidity show efficient conversion in gas phase alkylation of benzene with 1-octene with a good 2-phenyl octane selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alkylation of phenol with methanol has been carried out over Sn-La and Sn-Sm mixed oxides of varying compositions at 623 K in a vapour phase flow reactor. It is found that the product selectivity is greatly influenced by the acid-base properties of the catalysts. Ortho-cresol formation is favoured over catalysts with weak acid sites whereas formation of 2,6-xylenol occurs in the presence of stronger acid sites. The cyclohexanol decomposition reaction and titrimetric method using Hammett indicators have been employed to elucidate the acid-base properties of the catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vapour phase methylation of phenol is carried out over La2O3 supported vanadia systems of various composition. The structural features and physico chemical characterisation of the catalysts are investigated. Orthovanadates are formed in addition to surface vanadyl species on the metal oxide support. No V2O5 crystallites are detected. The acid base properties of the oxides are studied by Hammett indicator method and decomposition of cyclohexanol.The data are correlated with the catalytic activity and selectivity of the products. Ring alkylation is found to be predominant over these catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalyst compositions of the Zn1−xCOxFe2O4 (x= 0, 0.2, 0.5, 0.8 and 1.0) spiel series possessing ‘x’ values, x less than or equal to 0.5, are unique for selective N-monomethylation of aniline using methanol as the alkylating agent. Since dimethyl carbonate (DMC) is another potential non-toxic alkylating agent, alkylation of aniline was investigated over various Zn–Co ferrites using DMC as the alkylating agent. The merits and demerits of the two alkylating agents are compared. Catalytic activity followed a similar trend with respect to the composition of the ferrospinel systems. DMC is active at comparatively low temperature, where methanol shows only mild activity. However, on the selectivity basis, DMC as an alkylating agent could not compete with methanol, since the former gave appreciable amounts of N,N-dimethylaniline (NNDMA) even at low temperature where methanol gave nearly 99% N-methylaniline (NMA) selectivity. As in the case of methanol, DMC also did not give any C-alkylated products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various compositions of chromium manganese ferrospinels were tested as catalysts for the vapour phase alkylation of aniline with methanol. The samples were prepared by room temperature co-precipitation technique and characterized by various physico-chemical methods. The acidity–basicity determination revealed that the samples possess greater amount of basic sites than acidic sites. All the ferrite samples proved to be selective and active for N-monoalkylation of aniline leading to N-methyl aniline; Cr0.6Mn0.4Fe2O4, Cr0.8Mn0.2Fe2O4 and CrFe2O4 exhibited cent percent selectivity for N-methyl aniline. Neither C-alkylated products nor any other side products were detected for all catalyst samples. The catalytic activity of the samples studied in this reaction is related to their acid–base properties and also on the cation distribution. Under the optimized reaction conditions all the systems showed constant activity for a long duration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis an attempt has been made to compare the catalytic activity of some medium and large pore zeolites in a few alkylation and acylation reactions. The work reported in the present study is basically centered around the following zeolites namely, ZSM-5, mordenite, zeolite Y and beta. The major reactions carried out were benzoylation of o-xylene, propionylation of toluene and anisole and benzylation of 0xylene.The programme involves the synthesis, modifications and characterization of the zeolite catalysts by various methods. The influence of various parameters such as non-framework cations, Si/AI ratio of zeolites, temperature of the reaction, catalyst concentration, molar ratio of the reactants and recycling of the catalysts were also examined upon the conversion of reactants and the formation of the desired products in the alkylation / acylation reactions.The general conclusions drawn by us from the results obtained are summarized in the last chapter of the thesis. Zeolite beta offers interesting opportunities as a potential catalyst in alkylation reactions and the area of catalysis by medium and large pore zeolites is very fascinating and there is plenty of scope for further research in this field. Moreover, zeolite based catalysts are effective in meeting current industrial processing and more stringent environment pollution limits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of residual cations in rare earth metal modified faujasite–Y zeolite has been monitored using magic angle spinning NMR spectral analysis and catalytic activity studies. The second metal ions being used are Na+, K+ and Mg+. From a comparison of the spectra of different samples, it is concluded that potassium and magnesium exchange causes a greater downfield shift in the 29Si NMR peaks. Also, lanthanum exchanged samples show migration behavior from large cages to small cages, which causes the redistribution of second counter cations. It is also observed that Mg2+ causes the most effective migration of lanthanum ions due to its greater charge. The prepared systems were effectively employed for the alkylation of benzene with 1-octene in the vapor phase. From the deactivation studies it is observed that the as-exchanged zeolites possess better stability towards reaction condition over the pure HFAU zeolite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalysis is a very important process from an industrial point of view since the production of most industrially important chemicals involves catalysis.Solid acid catalysts are appealing since the nature of acid sites is known and their chemical behavior in acid catalyzed reactions can be rationalized by means of existing theories and models. Mixed oxides crystallizing in spinel structure are of special interest because the spinel lattice imparts extra stability to the catalyst under various reaction conditions so that theses systems have sustained activities for longer periods. The thesis entitled" Catalysis By Ferrites And Cobaltites For The Alkylation And Oxidation Of Organic Compounds " presents the preparation ,characterization ,and activity studies of the prepared spinels were modified by incorporating other ions and by changing the stoichiometry.The prepared spinels exhibiting better catalytic activity towards the studied reactions with good product selectivity.Acid-base properties and cation distribution of the spinels were found to control the catalytic activity.