995 resultados para Alkaline solutions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation evaluated the effectiveness of an infection control protocol for cleansing and disinfecting removable dental prostheses. Sixty-four dentures were rubbed with sterile cotton swab immediately after they had been taken from patients' mouths. Samples were individually placed in the culture medium and immediately incubated at 37 +/- 2 degreesC. The dentures were scrubbed for 1 min with 4% chlorhexidine, rinsed for 1 min in sterile water and placed for 10 min in one of the following immersion solutions: 4% chlorhexidine gluconate, 1% sodium hypochlorite, Biocide (iodophors) and Amosan (alkaline peroxide). After the disinfection procedures, the dentures were immersed in sterile water for 3 min, reswabbed and the samples were incubated. All samples obtained in the initial culture were contaminated with micro-organisms. All the lower dentures immersed in Biocide showed positive growth, and the upper dentures were positive for growth in six of eight dentures. The 4% chlorhexidine gluconate, 1% sodium hypochlorite and Amosan solutions have been proved effective to reduce the growth of the micro-organisms in the 10 min immersion period. The protocol evaluated in this study seems to be a viable method to prevent cross-contamination between dental personnel and patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capacity of goethite for Cd-II substitution has been explored in a series of synthetic samples prepared from Fe-III and Cd-II nitrate solutions aged 21 days in alkaline media. The total metal content ([ Fe] + [ Cd]) was 0.071 M in all preparations. The samples have been characterized by chemical and X-ray diffraction analysis; the morphology of the solids is described. The cell parameters for all samples were obtained by the Rietveld fits to the X-ray diffraction data. Refined structures show that for samples prepared at the final molar ratio mu(Cd)less than or equal to5.50 (expressed as mu(Cd) = 100X[Cd]/[Cd] + [Fe]), a (Cd, Fe)-goethite is the only crystalline product. In these samples, the unit cell parameters increased as a function of Cd concentration, indicating Cd incorporation in the structural frame. At the preparative ratio, mu(Cd)=7.03, the incorporation of Cd in the goethite structure is drastically reduced and a probable Cd-substituted hematite is formed together with the Fe,Cd-goethite. (C) 2003 International Centre for Diffraction Data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new synthetic route for producing monodispersed and single crystal acicular goethite particles with small particle size and a high axial ratio adequate for use as a high density magnetic recording media precursor is reported. It essentially consists of the hydrolysis of alkaline Fe-III suspensions in the presence of carbonate by a three-step procedure, the formation of ferrihydrite primary particles, the ferrihydrite dissolution and nucleation of goethite, and the growth of the goethite nuclei. Changing the temperature of heating during ageing achieved a separation of the two last stages. X-Ray diffraction, transmission electron microscopy, infrared spectroscopy and surface area data have been used to determine the mechanism responsible for the formation of goethite particles with controlled size and shape. The best conditions to prepare monodispersed goethite particles have been established. The results show that uniform goethite particles of (a) 60 nm length with an axial ratio of 6 and (b) 230 nm length with a high axial ratio of 10, can be obtained by using an [OH]/[Fe] molar ratio of 0.35 in the initial suspensions with carbonate or sodium hydroxide, respectively. The [OH]/[Fe] molar ratio determines the particle size and elongation by controlling the hydrolysis reaction rate, while the carbonate ions promote a constant [OH] in the solution, keeping the pH around 10 during the entire synthesis process. This procedure, associated with the appropriate temperature control, leads, under certain conditions, to highly homogeneous goethite particles with sizes smaller than those obtained using sodium hydroxide with the same [OH]/[Fe] ratio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alkaline materials have shown incompatibility with methylene blue dye in leakage experiments. The goal of the present study was to analyze the effect of different dyes on the evaluation of the apical sealing ability of Mineral Trioxide Aggregate root-end fillings. Fifty-six extracted human canines were submitted to root canal instrumentation and obturation. After apical resection, retrograde cavities were prepared and teeth were randomly divided into four experimental (n = 13) and two control groups (n = 2). The following root-end filling materials were used: groups 1 and 2--Pro Root MTA (Dentsply), groups 3 and 4--zinc oxide-eugenol cement (ZOE). Teeth in groups 1 and 3 were immersed in 2% methylene blue solution, while teeth in groups 2 and 4 were immersed in 0.2% rhodamine B in a reduced pressure environment for 48 hours. Teeth were then longitudinally sectioned and leakage was evaluated. Results were submitted to statistical analysis (ANOVA and Tukey's test). Group 1 presented the least leakage (p < 0.05). It was concluded that the evaluation of the sealing ability of MTA is influenced by the dye used, since this material presented better sealing ability when evaluated with Methylene Blue, but was similar to ZOE when evaluated with rhodamine B.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The critical conditions for hydrogenembrittlement (HE) risk of highstrengthgalvanizedsteel (HSGS) wires and tendons exposed to alkaline concrete pore solutions have been evaluated by means of electrochemical and mechanical testing. There is a relationship between the hydrogenembrittlementrisk in HSGS and the length of hydrogen evolution process in alkalinemedia. The galvanizedsteel suffers anodic dissolution simultaneously to the hydrogen evolution which does not stop until the passivation process is completed. HSGS wires exposed to a very highalkalinemedia have showed HE risk with loss in mechanical properties only if long periods with hydrogen evolution process take place with a simultaneous intensive galvanized coating reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of calcium hydroxide for scavenging zincate species is demonstrated to be a highly effective approach for increasing the electrolyte capacity and improving the performance of the zinc-air fuel cell system. A fundamental approach is established in this study to quantify the formation of calcium zincate as the product of scavenging and the amount of water compensation necessary for optimal performance. The good agreement between predicted and experimental results proves the validity of the proposed theoretical approach. By applying the results of theoretical predictions, both the electrolyte capacity and the cell longevity have been increased by more than 40%. It is also found that, using Ca(OH)2 to scavenge zincate species in concentrated KOH solutions, affects mostly the removal of zincate, rather than ZnO, from the electrolyte, whereas the presence of excess, free, mobile H2O plays a key role in dissolving ZnO and forming zincate. The results obtained in this study demonstrate that the proposed approach can widely and effectively be applied to all zinc-air cell systems during their discharge cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, for the first time, a cobalt carbonate hydroxide (Co(CO3 )0.5 (OH)⋅0.11 H2 O) nanowire array on Ti mesh (CHNA/Ti) was applied to drive the dehydrogenation of alkaline NaBH4 solution for on-demand hydrogen production. Compared with other nanostructured Co-based catalyst systems, CHNA/Ti can be activated more quickly and separated easily from fuel solutions. This self-supported cobalt salt nanowire array catalyst works as an efficient and robust 3D catalyst for the hydrolysis reaction of NaBH4 with a hydrogen generation rate of 4000 mL min(-1)  gCo (-1) and a low apparent activation energy of 39.78 kJ mol(-1) and offers an attractive system for on-demand hydrogen generation.