856 resultados para Algoritmos experimentais
Resumo:
A domótica é uma área com grande interesse e margem de exploração, que pretende alcançar a gestão automática e autónoma de recursos habitacionais, proporcionando um maior conforto aos utilizadores. Para além disso, cada vez mais se procuram incluir benefícios económicos e ambientais neste conceito, por forma a garantir um futuro sustentável. O aquecimento de água (por meios elétricos) é um dos fatores que mais contribui para o consumo de energia total de uma residência. Neste enquadramento surge o tema “algoritmos inteligentes de baixa complexidade”, com origem numa parceria entre o Departamento de Eletrónica, Telecomunicações e Informática (DETI) da Universidade de Aveiro e a Bosch Termotecnologia SA, que visa o desenvolvimento de algoritmos ditos “inteligentes”, isto é, com alguma capacidade de aprendizagem e funcionamento autónomo. Os algoritmos devem ser adaptados a unidades de processamento de 8 bits para equipar pequenos aparelhos domésticos, mais propriamente tanques de aquecimento elétrico de água. Uma porção do desafio está, por isso, relacionada com as restrições computacionais de microcontroladores de 8 bits. No caso específico deste trabalho, foi determinada a existência de sensores de temperatura da água no tanque como a única fonte de informação externa aos algoritmos, juntamente com parâmetros pré-definidos pelo utilizador que estabelecem os limiares de temperatura máxima e mínima da água. Partindo deste princípio, os algoritmos desenvolvidos baseiam-se no perfil de consumo de água quente, observado ao longo de cada semana, para tentar prever futuras tiragens de água e, consequentemente, agir de forma adequada, adiantando ou adiando o aquecimento da água do tanque. O objetivo é alcançar uma gestão vantajosa entre a economia de energia e o conforto do utilizador (água quente), isto sem que exista necessidade de intervenção direta por parte do utilizador final. A solução prevista inclui também o desenvolvimento de um simulador que permite observar, avaliar e comparar o desempenho dos algoritmos desenvolvidos.
Resumo:
A generalidade dos problemas de ordem prática no domínio do dimensionamento das estruturas incluem variáveis discretas. Os métodos matemáticos tradicionais apresentam dificuldades na procura dos óptimos globais em problemas não lineares discretos. Os algoritmos genéticos constituem uma heurística eficaz na optimização de sistemas estruturais que envolvem variáveis discretas e contínuas. No presente trabalho, descreve-se uma metodologia que visa a optimização da forma geométrica da secção, do dimensionamento e colocação das armaduras em vigas de betão armado, com recurso a algoritmos genéticos. Apresenta-se um exemplo de aplicação da metodologia proposta.
Resumo:
Tese de dout., Engenharia Electrónica e Computação, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2003
Resumo:
Esta dissertação tem por objectivo aplicar algoritmos evolutivos multiobjectivo a problemas de afectação de recursos, particulamente a problemas de geração de horários de exames e problemas de geração de horários de aulas em Universidades. Estes problemas são normalmente caracterizados pela existência de múltiplos objectivos conflituosos. Neste sentido, uma formalização multiobjectivo para estes problemas é apresentada, com base no conceito de metas e prioridades. Vários aspectos dos algoritmos evolutivos são propostos e analisados para esta classe de problemas, nomeadamente, métodos de selecção e tipo e parâmetros de operadores de mutação. A escolha da representação e dos operadores utilizados é feita tendo em conta a necessidade de não privilegiar demasiadamente certos objectivos em relação a outros ao nível dos mecanismos de exploração. São apresentados estudos comparativos entre os algoritmos propostos por meio de métodos de inferência estatística em problemas reais na Universidade do Algarve. O conceito de função de aproveitamento é utilizado para avaliação de algoritmos evolutivos multiobjectivo. Finalmente, a análise da evolução do custo das soluções encontradas ao longo do tempo de execução através de funções de aproveitamento é apresentada.
Resumo:
Relatório da Prática de Ensino Supervisionada, Ensino de Informática, Universidade de Lisboa, 2013
Resumo:
Tese de doutoramento, Informática (Bioinformática), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Tese de doutoramento, Educação (Didática das Ciências), Universidade de Lisboa, Instituto de Educação, 2015
Resumo:
Dissertação de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica Ramo de Manutenção e Produção
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1º e 2º Ciclo do Ensino Básico
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica - Ramo de Energia
Resumo:
A procura de padrões nos dados de modo a formar grupos é conhecida como aglomeração de dados ou clustering, sendo uma das tarefas mais realizadas em mineração de dados e reconhecimento de padrões. Nesta dissertação é abordado o conceito de entropia e são usados algoritmos com critérios entrópicos para fazer clustering em dados biomédicos. O uso da entropia para efetuar clustering é relativamente recente e surge numa tentativa da utilização da capacidade que a entropia possui de extrair da distribuição dos dados informação de ordem superior, para usá-la como o critério na formação de grupos (clusters) ou então para complementar/melhorar algoritmos existentes, numa busca de obtenção de melhores resultados. Alguns trabalhos envolvendo o uso de algoritmos baseados em critérios entrópicos demonstraram resultados positivos na análise de dados reais. Neste trabalho, exploraram-se alguns algoritmos baseados em critérios entrópicos e a sua aplicabilidade a dados biomédicos, numa tentativa de avaliar a adequação destes algoritmos a este tipo de dados. Os resultados dos algoritmos testados são comparados com os obtidos por outros algoritmos mais “convencionais" como o k-médias, os algoritmos de spectral clustering e um algoritmo baseado em densidade.
Resumo:
Mestrado em Computação e Instrumentação Médica
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Mecânica na Área de Manutenção e Produção
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Eletrónica e Telecomunicações