1000 resultados para Algoritmos computacionais
Resumo:
A definição das parcelas familiares em projetos de reforma agrária envolve questões técnicas e sociais. Essas questões estão associadas principalmente às diferentes aptidões agrícolas do solo nestes projetos. O objetivo deste trabalho foi apresentar método para realizar o processo de ordenamento territorial em assentamentos de reforma agrária empregando Algoritmo Genético (AG). O AG foi testado no Projeto de Assentamento Veredas, em Minas Gerais, e implementado com base no sistema de aptidão agrícola das terras.
Resumo:
Utilizar robôs autônomos capazes de planejar o seu caminho é um desafio que atrai vários pesquisadores na área de navegação de robôs. Neste contexto, este trabalho tem como objetivo implementar um algoritmo PSO híbrido para o planejamento de caminhos em ambientes estáticos para veículos holonômicos e não holonômicos. O algoritmo proposto possui duas fases: a primeira utiliza o algoritmo A* para encontrar uma trajetória inicial viável que o algoritmo PSO otimiza na segunda fase. Por fim, uma fase de pós planejamento pode ser aplicada no caminho a fim de adaptá-lo às restrições cinemáticas do veículo não holonômico. O modelo Ackerman foi considerado para os experimentos. O ambiente de simulação de robótica CARMEN (Carnegie Mellon Robot Navigation Toolkit) foi utilizado para realização de todos os experimentos computacionais considerando cinco instâncias de mapas geradas artificialmente com obstáculos. O desempenho do algoritmo desenvolvido, A*PSO, foi comparado com os algoritmos A*, PSO convencional e A* Estado Híbrido. A análise dos resultados indicou que o algoritmo A*PSO híbrido desenvolvido superou em qualidade de solução o PSO convencional. Apesar de ter encontrado melhores soluções em 40% das instâncias quando comparado com o A*, o A*PSO apresentou trajetórias com menos pontos de guinada. Investigando os resultados obtidos para o modelo não holonômico, o A*PSO obteve caminhos maiores entretanto mais suaves e seguros.
Resumo:
Este artigo avalia os diferentes impactos de variáveis relevantes na descoberta e na difusão de tecnologias, em mercados de alta competitividade. O objetivo foi identificar possibilidades de convívio de diferentes grupos estratégicos, associados ao uso ou à produção de tecnologias convencionais ou inovadoras. Foi utilizado um método matemático de busca e otimização, inspirado nos mecanismos da genética e na evolução de população de seres vivos. Os resultados obtidos sugerem que a interação entre empresas inovadoras pode, simultaneamente, permitir um aprimoramento da tecnologia e criar obstáculos para a entrada de novos competidores. Apesar de ser uma simplificação que não permite incorporar toda a complexidade do mercado, o modelo possibilita uma investigação dos comportamentos corporativos e de evolução de estratégias tecnológicas, principalmente em situações em que é difícil levantar dados empíricos ou em que casos específicos não permitem generalizações de evidências.
Resumo:
Introdução – A lipofilia é uma das propriedades físico-químicas que mais influencia a capacidade de uma molécula se movimentar através de compartimentos biológicos. O coeficiente de partição octanol/água (log P) permite, assim, obter uma estimativa da absorção dos fármacos no organismo. A existência de métodos indirectos para um cálculo rápido do log P pode revelar-se de grande importância na análise de listas de compostos com potencial acção farmacológica, reduzindo-as àqueles que se prevêem ter um melhor comportamento biológico. Objectivos – O propósito deste estudo é dar a conhecer um método cromatográfico de RP-HPLC desenvolvido para a determinação indirecta da lipofilia molecular e avaliar a performance de vários programas de cálculo computacional desse mesmo parâmetro. Metodologias – Seleccionaram-se 25 compostos químicos, avaliou-se o log P de cada um deles por RP-HPLC e confrontaram-se os resultados obtidos com os de sete programas computacionais. Resultados – O método RP-HPLC testado demonstrou ser vantajoso em comparação com o convencional shake flask. O programa de cálculo indirecto que proporcionou resultados mais próximos dos experimentais foi o ALOGPS© 2.1. Conclusões – A escolha ideal para a determinação da lipofilia de compostos cujo log P estimado esteja entre 0 e 6 é, sobretudo no que diz respeito à rapidez e simplicidade do processo, o método experimental indirecto RP-HPLC. Quanto aos métodos computacionais concluiu-se que nenhum dos programas, incluindo o ALOGPS© 2.1, demonstrou ser eficaz na avaliação de isómeros pelo que, para estes compostos, será sempre necessário recorrer ao método shake flask ou RP-HPLC.
Resumo:
A crescente interactividade e complexidade dos sistemas computacionais tem levado à exploração de métodos alternativos para a abordagem de diferentes tipos de problemas. Particularmente relevante tem sido a utilização de métodos de inspiração biológica em diferentes áreas, desde métodos genéricos, a comportamentos sociais e a emoção artificial. Este trabalho tem por objectivo, o estudo e a aplicação de soluções de inspiração biológica no contexto da implementação de sistemas computacionais capazes de navegação autónoma. O trabalho envolve três vertentes principais: (i) estudo de abordagens de base biológica para resolução de problemas no âmbito de sistemas computacionais; (ii) estudo e concepção de uma abordagem de inspiração biológica para implementação de sistemas computacionais capazes de navegação autónoma; (iii) concepção e implementação de um protótipo ilustrativo da abordagem proposta.
Resumo:
Ao me ter sido apresentado o tema focado neste trabalho, a curiosidade apoderou-se de mim para tentar perceber o que eram os algoritmos genéticos, a aprendizagem automática e a aplicação dos algoritmos genéticos sobre este tipo de aprendizagem e onde é que estas técnicas podiam ser aplicadas. Assim, neste trabalho é realizado um estudo destes temas relativamente ao seu funcionamento, aplicabilidade, problemas e soluções existentes, bem como, a comparação entre duas das mais conhecidas abordagens ao nível da aprendizagem automática baseada em algoritmos genéticos. São no fim apresentados programas exemplificativos de implementações de aplicação de algoritmos genéticos a problemas de optimização/descoberta e de aprendizagem automática. Este texto está organizado em cinco capítulos, sendo o primeiro a introdução, o segundo é uma apresentação dos algoritmos genéticos, no terceiro capítulo é apresentada a técnica de aprendizagem automática baseada em algoritmos genéticos, as suas diferentes abordagens e implementações, aplicabilidade e comparação entre abordagens. No quarto capítulo são apresentados alguns exemplos práticos que pretendem demonstrar a forma como se implementam algumas das abordagens referidas nos capítulos anteriores com o intuito de ver o seu funcionamento na prática e comparar diferentes algoritmos no mesmo problema.
Resumo:
De entre todos os paradigmas de aprendizagem actualmente identificados, a Aprendizagem por Reforço revela-se de especial interesse e aplicabilidade nos inúmeros processos que nos rodeiam: desde a solitária sonda que explora o planeta mais remoto, passando pelo programa especialista que aprende a apoiar a decisão médica pela experiencia adquirida, até ao cão de brincar que faz as delícias da criança interagindo com ela e adaptando-se aos seus gostos, e todo um novo mundo que nos rodeia e apela crescentemente a que façamos mais e melhor nesta área. Desde o aparecimento do conceito de aprendizagem por reforço, diferentes métodos tem sido propostos para a sua concretização, cada um deles abordando aspectos específicos. Duas vertentes distintas, mas complementares entre si, apresentam-se como características chave do processo de aprendizagem por reforço: a obtenção de experiência através da exploração do espaço de estados e o aproveitamento do conhecimento obtido através dessa mesma experiência. Esta dissertação propõe-se seleccionar alguns dos métodos propostos mais promissores de ambas as vertentes de exploração e aproveitamento, efectuar uma implementação de cada um destes sobre uma plataforma modular que permita a simulação do uso de agentes inteligentes e, através da sua aplicação na resolução de diferentes configurações de ambientes padrão, gerar estatísticas funcionais que permitam inferir conclusões que retractem entre outros aspectos a sua eficiência e eficácia comparativas em condições específicas.
Resumo:
A presente dissertação apresenta um conjunto de algoritmos, cujo objetivo é a determinação da capacidade máxima de energia que é possível integrar numa rede de energia elétrica, seja num único nó ou em vários nós simultaneamente. Deste modo, obtém-se uma indicação dos locais mais adequados à nova instalação de geração e quais os reforços de rede necessários, de forma a permitirem a alocação da nova energia. Foram estudados e identificados os fatores que influenciam o valor da capacidade máxima nodal, assim como as suas consequências no funcionamento da rede, em particular o carácter simultâneo associado às referidas injeções nodais. Nesse sentido, são apresentados e desenvolvidos algoritmos que têm em consideração as características técnicas da geração a ligar e as restrições físicas impostas pela rede elétrica existente. Os algoritmos desenvolvidos apresentados baseiam-se em busca gaussiana, tendo sido igualmente implementada uma heurística que tem em consideração a proximidade de outras injeções em nós adjacentes e finalmente, dada a natureza combinatória do problema, propõe-se a aplicação de algoritmos genéticos especificamente adaptados ao problema Conclui-se que os algoritmos genéticos encerram características que lhes permitem ser aplicados em qualquer topologia com resultados superiores a todos os algoritmos desenvolvidos. Os métodos apresentados foram desenvolvidos e implementados usando a linguagem de programação Python, tendo-se desenvolvido ainda um interface visual ao utilizador, baseado em wxPython, onde estão implementadas diversas ferramentas que possibilitam a execução dos algoritmos, a configuração dos seus parâmetros e ainda o acesso à informação resultante dos algoritmos em formato Excel.
Resumo:
Mestrado em Radioterapia.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores. Área de Especialização de Automação e Sistemas.
Resumo:
Dissertação de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica Ramo de Manutenção e Produção
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações