989 resultados para Algal pigment absorption coefficient at given wavelength


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare earth (RE) ions have spectroscopic characteristics to emit light in narrow lines, which makes RE complexes with organic ligands candidates for full color OLED (Organic Light Emitting Diode) applications. In particular, beta-diketone rare earth (RE(3+)) complexes show high fluorescence emission efficiency due to the high absorption coefficient of the beta-diketone and energy transfer to the central ion. In this work, the fabrication and the electroluminescent properties of devices containing a double and triple-layer OLED using a new beta-diketone complex, [Eu(bmdm)(3)(tppo)(2)], as transporting and emitting layers are compared and discussed. The double and triple-layer devices based on this complex present the following configurations respectively: device 1: ITO/TPD (40 nm)/[Eu(bmdm)(3)(tppo)(2)] (40 nm)/Al (150 nm); device 2: ITO/TPD (40 nm)/[Eu(bmdm)(3) (tppo)(2)] (40 nm)/Alq(3) (20 nm)/Al (150 nm) and device 3: ITO/TPD (40 nm)/bmdm-ligand (40 nm)/Al (150 nm), were TPD is (N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1-biphenil-4,4-diamine) and bmdm is butyl methoxy-dibenzoyl-methane. All the films were deposited by thermal evaporation carried out in a high vacuum system. These devices exhibit high intensity photo- (PL) and electro-luminescent (EL) emission. Electroluminescence spectra show emission from Eu(3+) ions attributed to the (5)D(0) to (7)F(J) (J = 0, 1, 2, 3 and 4) transitions with the hypersensitive (5)D(o) -> (7)F(2) transition (around 612 nm) as the most prominent one. Moreover, a transition from (5)D(1) to (7)F(1) is also observed around 538 nm. The OLED light emission was almost linear with the current density. The EL CIE chromaticity coordinates (X = 0.66 and Y = 0.33) show the dominant wavelength, lambda(d) = 609 nm, and the color gamut achieved by this device is 0.99 in the CIE color space. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corneal collagen cross-linking (CXL) has been described as a promising therapy for keratoconus. According to standard CXL protocol, epithelium should be debrided before treatment to allow penetration of riboflavin into the corneal stroma. However, removal of the epithelium can increase procedure risks. In this study we aim to evaluate stromal penetration of a biocompatible riboflavin-based nanoemulsion system (riboflavin-5-phosphate and riboflavin-base) in rabbit corneas with intact epithelium. Two riboflavin nanoemulsions were developed. Transmittance and absorption coefficient were measured on corneas with intact epithelia after 30, 60, 120, 180, and 240 minutes following exposure to either the nanoemulsions or standard 0.1% or 1% riboflavin-dextran solutions. For the nanoemulsions, the epithelium was removed after measurements to assure that the riboflavin had passed through the hydrophobic epithelium and retained within the stroma. Results were compared to de-epithelialized corneas exposed to 0.1% riboflavin solution and to the same riboflavin nanoemulsions for 30 minutes (standard protocol). Mean transmittance and absorption measured in epithelialized corneas receiving the standard 0.1% riboflavin solution did not reach the levels found on the debrided corneas using the standard technique. Neither increasing the time of exposure nor the concentration of the riboflavin solution from 0.1% to 1% improved riboflavin penetration through the epithelium. When using riboflavin-5-phosphate nanoemulsion for 240 minutes, we found no difference between the mean absorption coefficients to the standard cross-linking protocol (p = 0.54). Riboflavin nanoemulsion was able to penetrate the corneal epithelium, achieving, after 240 minutes, greater stromal concentration when compared to debrided corneas with the standard protocol (p = 0.002). The riboflavin-5-phosphate nanoemulsion diffused better into the stroma than the riboflavin-base nanoemulsion. © 2013 Bottos et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uma boa alternativa para o controle de ruído em ambientes fechados é a utilização de materiais de absorção sonora, onde parte da energia acústica é transformada em energia térmica através da viscosidade do ar, o que ocorre tanto em materiais porosos quanto fibrosos. A característica de absorção acústica de um material é determinada pelo coeficiente de absorção sonora que depende principalmente da freqüência, ângulo de incidência do som, densidade, espessura e estrutura interna do material. Da Amazônia, devido a sua sobrepujante biodiversidade, são retirados milhares de produtos e subprodutos naturais, alguns dos quais não são totalmente aproveitados. Dessa forma, muitos resíduos chegam a outros setores industriais, como é o caso da fibra de coco que é utilizada das mais diversas formas. Assim, o presente trabalho define e descreve um processo de fabricação de painéis acústicos, a partir da fibra de coco, com a determinação experimental dos principais parâmetros visando o controle acústico de recintos, além de desenvolver um modelo numérico para estabelecimento de parâmetros de controle de qualidade e custo, que auxiliem no desenvolvimento e na fabricação de novos painéis. Primeiramente, são coletadas as informações necessárias para iniciar o processo de desenvolvimento dos painéis de fibra de coco, seguindo uma metodologia de desenvolvimento de produto, baseada no “projeto informacional”. Em seguida, são descritas todas as etapas do processo de fabricação destes painéis, para posterior obtenção de suas principais propriedades físico-químicas, mecânicas e acústicas. Com as simulações numéricas, buscou-se analisar e predizer o comportamento de um painel de fibra de coco (além de um painel de espuma comercialmente disponível), e investigar a sua influência sobre os parâmetros acústicos de um auditório (tempo de reverberação, decaimento da pressão sonora e inteligibilidade). Com o desenvolvimento dos painéis pretende-se contribuir para a criação de novos setores na economia do estado, principalmente quando se considera o alto custo dos painéis comercializados no sul do país. Finalmente, outra vantagem significativa é a possibilidade da utilização destes painéis dentro do contexto das linhas arquitetônicas regionais, onde são realçados os materiais da própria região.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Usamos uma metodologia experimental para investigar propriedades ópticas e térmicas da oleína de palma (OP), a fração líquida do azeite de palma (Elaies guineensis) obtida por fracionamento natural, com propriedades físicas que diferem apreciavelmente do azeite. Em uma primeira abordagem, estudamos os espectros de absorção e emissão monitorando a modificação dos espectros com o aumento da concentração β-caroteno misturado com OP, o que permitiu encontrar o coeficiente de absorção molar do β-caroteno (ε = 920,802 mol -1.cm-1.L). Este valor é muito baixo em relação aos conhecidos para o β-caroteno diluído em um solvente puro, como o benzeno ou o n-hexano. Experimentos feitos com β-caroteno diluído em hexano nos permitiram medir ε = 117.900 L.mol-1.cm-1, que representa aproximadamente 18% abaixo dos valores reportados na literatura. Em uma segunda abordagem, os espectros de absorção foram usados para medir o coeficiente de absorção da OP, A = 0,028 cm-1 em 532 nm, o comprimento de onda de um laser usado como fonte de excitação no estudo das propriedades térmicas da OP usando a técnica de lente térmica. Neste sentido foi medido também o coeficiente térmico do índice de refração da OP, dn/dt = - 3,821 x 10 -4 °C -1. Estes resultados, associados ao modelo aberrante para estudos de espectroscopia de lente térmica, levaram à medição do coeficiente de difusão, D = 2,19 ± 0,11 x 10-4 cm2/s, e da condutividade térmica, k = 5,96 ± 0,08 W/m°C. Embora as medidas das propriedades térmicas da OP não sejam ainda conhecidas na literatura, observa-se que elas têm as mesmas ordens de grandeza daquelas já conhecidas para outros óleos vegetais que foram relatadas na literatura.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fabrication of optoelectronic devices requires the employment of at least one transparent electrode. Usually, commercially transparent electrodes have been made by deposition of indium tin oxide (ITO) films by RF-Sputtering technique. These commercial electrodes have sheet resistance of about 100 Ω/sq and optical transmittance of 77% at the wavelength of 550 nm. The poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) is an alternative material to fabricate transparent electrodes due to its high conductivity (about 600 S/cm) and solubility in water. Soluble conductive materials exhibits advantages for processing of electrode layers, however there is a disadvantage during devices fabrication once materials with the same solvent of the electrode material cannot be coated one over the other. Alternatively, organic/Silica hybrid materials prepared by sol-gel process allow producing bulks and films with high chemical durability. In order to obtain transparent electrodes with high chemical durability, we introduced a blended material comprising the high UV-VIS transparency of organic/Silica sol-gel material and a high conductivity polymer PEDOT:PSS. The organic/Silica sol was obtained using two different molar concentrations (1:1 and 4:1), of tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTS). Amounts of PEDOT:PSS solutions were added to the sol material, resulting in different weight fractions of sol and polymer. G:T/P:P were deposit onto glass substrates by spray-coating. In order to perform electrical characterization of the blended material, gold electrodes were thermally evaporated onto the films. The electrical characterization was performed using a Keithley 2410 source/meter unity and the optical characterization, using a Cary50 UV-Vis spectrophotometer. The absorption coefficient and electric conductivity of the different compositions blends, as function of the PEDOT:PSS concentration, were...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an experimental study of the nonlinear optical absorption of the eutectic mixture E7 at the nematic-isotropic phase transition by the Z-scan technique, under continuous-wave excitation at 532 nm. In the nematic region, the effective nonlinear optical coefficient beta, which vanishes in the isotropic phase, is negative for the extraordinary beam and positive for an ordinary beam. The parameter , whose definition in terms of the nonlinear absorption coefficient follows the definition of the optical-order parameter in terms of the linear dichroic ratio, behaves like an order parameter with critical exponent 0.22 +/- 0.05, in good agreement with the tricritical hypothesis for the nematic-isotropic transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O-2 gas supply is periodically interrupted rather than by a decrease of the partial O-2 gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 x 10(2) cm(-1) to more than 4 x 10(3) cm(-1) as a result of the gas flow discontinuity. A red-shift of similar to 0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40nm. Moreover, the interruptions of the O-2 gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O-2 gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the optimization of efficiency of the photocatalytic activity and the magnetic doping of TiO2 films. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724334]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional methods of measuring sound absorption coefficient and sound transmission loss of a material are time consuming. To overcome this limitation, normal incidence sound absorption and transmission loss measurement technique was developed. Unfortunately the equipment required for this task is equally expensive. Hence efforts are taken to develop a cost-effective equipment for measuring normal incidence sound absorption coefficient and transmission loss. An impedance tube capable of measure absorption coefficient and transmission loss is designed and built under a budget of $1500 for educational institutes. A background study is performed to gain knowledge and understanding of the normal incidence measurements technique. Based on the literature review, parameters involved such as tube material, source and microphone properties, sample holders, etc. are discussed in depth. Based on these parameters, design options are generated to meet the cost and functionality targets pre-assigned. After selection of materials and components, an impedance tube is built and tested using three fibrous absorption materials for absorption and a barrier for transmission loss performance. These measured results then compared with those obtained with the help of industry recognized Brüel & Kjær impedance tube. The results show performances are comparable, hence validation the new built tube.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cruise with RV Tydeman was devoted to study permanently stratified plankton systems in the (sub)tropical ocean, which are characterised by a deep chlorophyll peak between 80 and 150 m. To minimise lateral effects by horizontal transport of nutrients and organic matter from river outflow and upwelling regions, stations were selected in the middle of the North Atlantic Ocean between the continents of America and Africa. (5 - 35° N and 50 - 15° W). Here the vertical distributions of light and nutrients control the abundance and growth of autotrophic algae in the thermically stratified water column. This phytoplankton is numerically dominated by the prokaryotic picoplankters Synechococcus spp. and Prochlorococcus spp., which are smaller than 2 ?m. The productivity of the 100 to 150 m deep euphotic zone can be high, because a high heterotrophic/autotrophic biomass ratio induces a rapid regeneration of nutrients and inorganic carbon. Primary grazers are mainly micro-organisms such as heterotrophic nannoflagellates and ciliates, which feed on the small algae and on bacteria. Heterotrophic bacteria can outnumber the autotrophic algae, because their number is related to the substrate pools of dissolved and particulate dead organic matter. These DOC and detritus pools reach equilibrium at a concentration, where the rate of their production (proportional to algal biomass) equals their mineralisation and sinking rate (proportional to the concentration and weight of POC and detritus). At a relatively low value of the weight-specific loss rates, the equilibrium concentration of these carbon pools and their load of bacteria can be high. The bacterial productivity is proportional to the mineralisation rate, which in a steady state can never be higher than the rate of primary production. Hence the ratio in turnover rate of bacteria and autotrophs tends to be reciprocally proportional to their biomass ratio.