275 resultados para Alfalfa.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spodoptera species, representing widespread polyphagous insect pests, are resistant to Bacillus thuringiensis δ-endotoxins used thus far as insecticides in transgenic plants. Here we describe the chemical synthesis of a cryIC gene by a novel template directed ligation–PCR method. This simple and economical method to construct large synthetic genes can be used when routine resynthesis of genes is required. Chemically phosphorylated adjacent oligonucleotides of the gene to be synthesized are assembled and ligated on a single-stranded, partially homologous template derived from a wild-type gene (cryIC in our case) by a thermostable Pfu DNA ligase using repeated cycles of melting, annealing, and ligation. The resulting synthetic DNA strands are selectively amplified by PCR with short specific flanking primers that are complementary only to the new synthetic DNA. Optimized expression of the synthetic cryIC gene in alfalfa and tobacco results in the production of 0.01–0.2% of total soluble proteins as CryIC toxin and provides protection against the Egyptian cotton leafworm (Spodoptera littoralis) and the beet armyworm (Spodoptera exigua). To facilitate selection and breeding of Spodoptera-resistant plants, the cryIC gene was linked to a pat gene, conferring resistance to the herbicide BASTA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alfalfa mosaic virus (AlMV) coat protein is involved in systemic infection of host plants, and a specific mutation in this gene prevents the virus from moving into the upper uninoculated leaves. The coat protein also is required for different viral functions during early and late infection. To study the role of the coat protein in long-distance movement of AlMV independent of other vital functions during virus infection, we cloned the gene encoding the coat protein of AlMV into a tobacco mosaic virus (TMV)-based vector Av. This vector is deficient in long-distance movement and is limited to locally inoculated leaves because of the lack of native TMV coat protein. Expression of AlMV coat protein, directed by the subgenomic promoter of TMV coat protein in Av, supported systemic infection with the chimeric virus in Nicotiana benthamiana, Nicotiana tabacum MD609, and Spinacia oleracea. The host range of TMV was extended to include spinach as a permissive host. Here we report the alteration of a host range by incorporating genetic determinants from another virus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14) is a key enzyme in primary nitrogen assimilation in alfalfa (Medicago sativa L.) root nodules. Here we report that in alfalfa, a single gene, probably with multiple alleles, encodes for NADH-GOGAT. In situ hybridizations were performed to assess the location of NADH-GOGAT transcript in alfalfa root nodules. In wild-type cv Saranac nodules the NADH-GOGAT gene is predominantly expressed in infected cells. Nodules devoid of bacteroids (empty) induced by Sinorhizobium meliloti 7154 had no NADH-GOGAT transcript detectable by in situ hybridization, suggesting that the presence of the bacteroid may be important for NADH-GOGAT expression. The pattern of expression of NADH-GOGAT shifted during root nodule development. Until d 9 after planting, all infected cells appeared to express NADH-GOGAT. By d 19, a gradient of expression from high in the early symbiotic zone to low in the late symbiotic zone was observed. In 33-d-old nodules expression was seen in only a few cell layers in the early symbiotic zone. This pattern of expression was also observed for the nifH transcript but not for leghemoglobin. The promoter of NADH-GOGAT was evaluated in transgenic alfalfa plants carrying chimeric β-glucuronidase promoter fusions. The results suggest that there are at least four regulatory elements. The region responsible for expression in the infected cell zone contains an 88-bp direct repeat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In root nodules of alfalfa (Medicago sativa L.), N2 is reduced to NH4+ in the bacteroid by the nitrogenase enzyme and then released into the plant cytosol. The NH4+ is then assimilated by the combined action of glutamine synthetase (EC 6.3.1.2) and NADH-dependent Glu synthase (NADH-GOGAT; EC 1.4.1.14) into glutamine and Glu. The alfalfa nodule NADH-GOGAT protein has a 101-amino acid presequence, but the subcellular location of the protein is unknown. Using immunocytochemical localization, we determined first that the NADH-GOGAT protein is found throughout the infected cell region of both 19- and 33-d-old nodules. Second, in alfalfa root nodules NADH-GOGAT is localized predominantly to the amyloplast of infected cells. This finding, together with earlier localization and fractionation studies, indicates that in alfalfa the infected cells are the main location for the initial assimilation of fixed N2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To test the hypothesis that enhanced tolerance of oxidative stress would improve winter survival, two clones of alfalfa (Medicago sativa) were transformed with a Mn-superoxide dismutase (Mn-SOD) targeted to the mitochondria or to the chloroplast. Although Mn-SOD activity increased in most primary transgenic plants, both cytosolic and chloroplastic forms of Cu/Zn-SOD had lower activity in the chloroplast SOD transgenic plants than in the nontransgenic plants. In a field trial at Elora, Ontario, Canada, the survival and yield of 33 primary transgenic and control plants were compared. After one winter most transgenic plants had higher survival rates than control plants, with some at 100%. Similarly, some independent transgenic plants had twice the herbage yield of the control plants. Prescreening the transgenic plants for SOD activity, vigor, or freezing tolerance in the greenhouse was not effective in identifying individual transgenic plants with improved field performance. Freezing injury to leaf blades and fibrous roots, measured by electrolyte leakage from greenhouse-grown acclimated plants, indicated that the most tolerant were only 1°C more freezing-tolerant than alfalfa clone N4. There were no differences among transgenic and control plants for tetrazolium staining of field-grown plants at any freezing temperature. Therefore, although many of the transgenic plants had higher winter survival rates and herbage yield, there was no apparent difference in primary freezing injury, and therefore, the trait is not associated with a change in the primary site of freezing injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the short-term (30–240 min) interactions among nitrogenase activity, NH4+ assimilation, and plant glycolysis, we measured the concentrations of selected C and N metabolites in alfalfa (Medicago sativa L.) root nodules after detopping and during continuous exposure of the nodulated roots to Ar:O2 (80:20, v/v). Both treatments caused an increase in the ratios of glucose-6-phosphate to fructose-1,6-bisphosphate, fructose-6-phosphate to fructose-1,6-bisphosphate, phosphoenolpyruvate (PEP) to pyruvate, and PEP to malate. This suggested that glycolytic flux was inhibited at the steps catalyzed by phosphofructokinase, pyruvate kinase, and PEP carboxylase. In the Ar:O2-treated plants the apparent inhibition of glycolytic flux was reversible, whereas in the detopped plants it was not. In both groups of plants the apparent inhibition of glycolytic flux was delayed relative to the decline in nitrogenase activity. The decline in nitrogenase activity was followed by a dramatic increase in the nodular glutamate to glutamine ratio. In the detopped plants this was coincident with the apparent inhibition of glycolytic flux, whereas in the Ar:O2-treated plants it preceded the apparent inhibition of glycolytic flux. We propose that the increase in the nodular glutamate to glutamine ratio, which occurs as a result of the decline in nitrogenase activity, may act as a signal to decrease plant glycolytic flux in legume root nodules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alfalfa (Medicago sativa L.) roots contain large quantities of β-amylase, but little is known about its role in vivo. We studied this by isolating a β-amylase cDNA and by examining signals that affect its expression. The β-amylase cDNA encoded a 55.95-kD polypeptide with a deduced amino acid sequence showing high similarity to other plant β-amylases. Starch concentrations, β-amylase activities, and β-amylase mRNA levels were measured in roots of alfalfa after defoliation, in suspension-cultured cells incubated in sucrose-rich or -deprived media, and in roots of cold-acclimated germ plasms. Starch levels, β-amylase activities, and β-amylase transcripts were reduced significantly in roots of defoliated plants and in sucrose-deprived cell cultures. β-Amylase transcript was high in roots of intact plants but could not be detected 2 to 8 d after defoliation. β-Amylase transcript levels increased in roots between September and October and then declined 10-fold in November and December after shoots were killed by frost. Alfalfa roots contain greater β-amylase transcript levels compared with roots of sweetclover (Melilotus officinalis L.), red clover (Trifolium pratense L.), and birdsfoot trefoil (Lotus corniculatus L.). Southern analysis indicated that β-amylase is present as a multigene family in alfalfa. Our results show no clear association between β-amylase activity or transcript abundance and starch hydrolysis in alfalfa roots. The great abundance of β-amylase and its unexpected patterns of gene expression and protein accumulation support our current belief that this protein serves a storage function in roots of this perennial species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biosynthesis of monolignols can potentially occur via two parallel pathways involving free acids or their coenzyme A (CoA) esters. Caffeic acid 3-O-methyltransferase (COMT) and caffeoyl CoA 3-O-methyltransferase (CCOMT) catalyze functionally identical reactions in these two pathways, resulting in the formation of mono- or dimethoxylated lignin precursors. The activities of the two enzymes increase from the first to the sixth internode in stems of alfalfa (Medicago sativa L.), preceding the deposition of lignin. Alfalfa CCOMT is highly similar at the amino acid sequence level to the CCOMT from parsley, although it contains a six-amino acid insertion near the N terminus. Transcripts encoding both COMT and CCOMT are primarily localized to vascular tissue in alfalfa stems. Alfalfa CCOMT expressed in Escherichia coli catalyzes O-methylation of caffeoyl and 5-hydroxyferuloyl CoA, with preference for caffeoyl CoA. It has low activity against the free acids. COMT expressed in E. coli is active against both caffeic and 5-hydroxyferulic acids, with preference for the latter compound. Surprisingly, very little extractable O-methyltransferase activity versus 5-hydroxyferuloyl CoA is present in alfalfa stem internodes, in which relative O-methyltransferase activity against 5-hy-droxyferulic acid increases with increasing maturity, correlating with increased lignin methoxyl content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecules produced by Rhizobium meliloti increase respiration of alfalfa (Medicago sativa L.) roots. Maximum respiratory increases, measured either as CO2 evolution or as O2 uptake, were elicited in roots of 3-d-old seedlings by 16 h of exposure to living or dead R. meliloti cells at densities of 107 bacteria/mL. Excising roots after exposure to bacteria and separating them into root-tip- and root-hair-containing segments showed that respiratory increases occurred only in the root-hair region. In such assays, CO2 production by segments with root hairs increased by as much as 100% in the presence of bacteria. Two partially purified compounds from R. meliloti 1021 increased root respiration at very low, possibly picomolar, concentrations. One factor, peak B, resembled known pathogenic elicitors because it produced a rapid (15-min), transitory increase in respiration. A second factor, peak D, was quite different because root respiration increased slowly for 8 h and was maintained at the higher level. These molecules differ from lipo-chitin oligosaccharides active in root nodulation for the following reasons: (a) they do not curl alfalfa root hairs, (b) they are synthesized by bacteria in the absence of known plant inducer molecules, and (c) they are produced by a mutant R. meliloti that does not synthesize known lipo-chitin oligosaccharides. The peak-D compound(s) may benefit both symbionts by increasing CO2, which is required for growth of R. meliloti, and possibly by increasing the energy that is available in the plant to form root nodules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A maximum likelihood approach of half tetrad analysis (HTA) based on multiple restriction fragment length polymorphism (RFLP) markers was developed. This procedure estimates the relative frequencies of 2n gametes produced by mechanisms genetically equivalent to first division restitution (FDR) or second division restitution and simultaneously locates the centromere within a linkage group of RFLP marker loci. The method was applied to the diploid alfalfa clone PG-F9 (2n = 2x = 16) previously selected because of its high frequency of 2n egg production. HTA was based on four RFLP loci for which PG-F9 was heterozygous with codominant alleles that were absent in the tetraploid tester. Models including three linked and one unlinked RFLP loci were developed and tested. Results of the HTA showed that PG-F9 produced 6% FDR and 94% second division restitution 2n eggs. Information from a marker locus belonging to one linkage group was used to more precisely locate the centromere on a different linkage group. HTA, together with previous cytological analysis, indicated that in PG-F9, FDR 2n eggs are likely produced by diplospory, a mechanism common among apomictic species. The occurrence of FDR 2n eggs in plant species and their importance for crop evolution and breeding is discussed together with the potential applicability of multilocus HTA in the study of reproductive mutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A virus-based vector was used for the transient expression of the alfalfa mosaic virus coat protein (CP) gene in protoplasts and plants. The accumulation of wild-type CP conferred strong protection against subsequent alfalfa mosaic virus infection, enabling the efficacy of CP mutants to be determined without developing transgenic plants. Expression of the CP mRNA alone without CP accumulation conferred weaker protection against infection. The activity of the N-terminal mutant CPs in protection did not correlate with their activities in genome activation. The activity of a C-terminal mutant suggested that encapsidation did not have a role in protection. Our results indicate that interaction of the CP with alfalfa mosaic virus RNA is not important in protection, thereby leaving open the possibility that interactions with host factors lead to protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to infection by Rhizobium, highly differentiated organs called nodules form on legume roots. Within these organs, the symbiotic association between the host plant and bacteria is established. A putative plant transcription factor, NMH7, has been identified in alfalfa root nodules. nmh7 contains a MADS-box DNA-binding region and shows homology to flower homeotic genes. This gene is a member of a multigene family in alfalfa and was identified on the basis of nucleic acid homology to plant regulatory protein genes (MADS-box-containing genes) from Antirrhinum and Arabidopsis. RNA analysis and in situ hybridization showed that expression of this class of regulatory genes is limited to the infected cells of alfalfa root nodules and is likely to be involved in the signal transduction pathway initiated by the bacterial symbiont, Rhizobium meliloti. The expression of nmh7 in a root-derived organ is unusual for this class of regulatory genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The symbiotic pattern of expression of Rhizobium meliloti N2-fixation genes is tightly coupled with the histological organization of the alfalfa root nodule and thus is under developmental control. N2-fixation gene expression is induced very sharply at a particular zone of the nodule called interzone II-III that precedes the zone where N2 fixation takes place. We show here that this coupling can be disrupted, hereby resulting in ectopic expression of N2-fixation genes in the prefixing zone II of the nodule. Uncoupling was obtained either by using a R. meliloti strain in which a mutation rendered N2-fixation gene expression constitutive with respect to oxygen in free-living bacterial cultures or by placing nodules induced by a wild-type R. meliloti strain in a microoxic environment. These results implicate oxygen as a key determinant of the symbiotic pattern of N2-fixation gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se estima que la demanda de alimentos se duplicará en los próximos cincuenta años y por lo tanto, un importante aumento del rendimiento de los cultivos será necesario para alimentar a la creciente población mundial. Aunque la producción agrícola ha crecido en las últimas décadas, en gran medida debido al uso generalizado de fertilizantes, pesticidas, riego, etc., esta tasa de aumento de la producción no es sostenible a causa del impacto ambiental de las prácticas agrícolas modernas. Uno de los factores que permite el desarrollo de una agricultura sustentable es la calidad del suelo, la cual podría definirse como su capacidad para aceptar, almacenar y reciclar agua, minerales y energía para la producción de cultivos, preservando un ambiente sano. El suelo es considerado un espacio heterogéneo definido por sus propiedades físicas, químicas y biológicas, que bajo condiciones naturales tiende a desarrollar un equilibrio dinámico entre sus diferentes propiedades, lo que genera las condiciones adecuadas para una diversidad de organismos transformadores y descomponedores de sustratos. En general, se considera que la microbiota del suelo, conformada principalmente por bacterias y hongos, juega un papel importante en la fertilidad, reciclaje de nutrientes, evolución, estructura y conservación del mismo. En consecuencia la hipótesis planteada es que la agregación microbiana y la formación de biofilms son procesos cruciales para la supervivencia de las bacterias rizosféricas, la interacción con las plantas y el mejoramiento de la calidad del suelo. En este contexto el objetivo general del presente proyecto estará dirigido a evaluar el aporte de las comunidades microbianas y sus interacciones en el ecosistema rizosférico de la región centro-sur de Córdoba, poniendo especial énfasis en la incidencia sobre la calidad y conservación de los suelos. Por lo tanto y para validar esta hipótesis, se desarrollarán experiencias y evaluaciones dividiendo la investigación en los siguientes objetivos específicos: 1. Evaluar poblaciones bacterianas asociadas a suelo rizosférico de cultivos de impacto agroeconómico en la provincia de Córdoba. 2. Analizar el proceso de autoagregación en células planctónicas de Rizobios y establecer su relación con la capacidad formadora de biofilms. 3. Estudiar la formación de biofilm mixto entre diferentes bacterias rizoféricas aisladas de la rizósfera de cultivos de alfalfa y maní. Para ello se estudiarán alternativamente a través de los enfoques que se describen en el diseño experimental, distintos modelos de asociaciones microorganismo-planta. Si bien el modelo principal de estudio estará centrado en el par simbiótico S. meliloti-alfalfa y Bradyrhizobium sp.-maní, otras bacterias promotoras del crecimiento vegetal como Azospirillum y Pseudomonas, serán utilizadas en evaluaciones comparativas en virtud de las experiencias y capacidades previas de los integrantes del grupo de trabajo en los sistemas mencionados. Consideramos que con la metodología planteada en este proyecto y por medio de un amplio abordaje del tema en estudio, tanto por el uso de los modelos citados como por el diseño de ensayos a escala de laboratorio y a campo, se podrían lograr avances significativos en el conocimiento sobre la aplicación de microorganismos de interés agronómico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caption title.