1000 resultados para Aleutian Islands


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Univariate and multivariate analyses of 20 skull characters of 304 adult sea otters from throughout the geographic range strongly suggest that three subspecies should be recognized. The nominate form, Enhydra lutris lutris, occurs from the Kuril Islands north to the Commander Islands in the western Pacific Ocean. Individuals of E. l. lutris are characterized by large size and wide skulls with short nasal bones. E. 1. nereis is found along the California coast and off San Nicolas Island, where the species recently has been reintroduced from coastal California. Specimens of E. 1. nereis have narrow skulls with a long rostrum and small teeth, and usually lack the characteristic notch in the postorbital region found in most specimens of the other two subspecies. A new subspecies described by Don E. Wilson in this report, occurs throughout the Aleutian Islands and southward in the eastern Pacific to Washington. Specimens of the new subspecies are intermediate in size in most, but not all, characters and have longer mandibles than either of the other two subspecies

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The known summer feeding range of the North Pacific humpback whale (Megaptera novaeangliae) extends from California, along the coasts of Oregon, Washington, and Alaska, into the Bering Sea, along the Aleutian Islands, the Sea of Okhotsk (Tomilin 1957), and to northern Japan (Rice 1977). In feeding areas of the northeastern Pacific Ocean, humpback whale photoidentification research has been concentrated off California (Calambokidis et al. 1993), southeastern Alaska (Darling and McSweeney 1985, Baker et al. 1986, 1992; Perry et al. 1990), Prince William Sound in Alaska (von Ziegesar 1992), the Oregon and Washington coasts (Calambokidis et al. 1993), and British Columbia (Darling and McSweeney 1985; Graerne Ellis, unpublished data). Results of these photoidentification studies have documented that individual whales tend to return to the same general areas in subsequent years (Darling and McSweeney 1985, Baker et al. 1986, Calambokidis et a(. 1996, von Ziegesar et al. 1994).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over the past three decades, the decline and altered spatial distribution of the western stock of Steller sea lions (Eumetopias jubatus) in Alaska have been attributed to changes in the distribution or abundance of their prey due to the cumulative effects of fisheries and environmental perturbations. During this period, dietary prey occurrence and diet diversity were related to population decline within metapopulation regions of the western stock of Steller sea lions, suggesting that environmental conditions may be variable among regions. The objective of this study, therefore, was to examine regional differences in the spatial and temporal heterogeneity of oceanographic habitat used by Steller sea lions within the context of recent measures of diet diversity and population trajectories. Habitat use was assessed by deploying satellite-depth recorders and satellite relay data loggers on juvenile Steller sea lions (n = 45) over a five-year period (2000–2004) within four regions of the western stock, including the western, central, and eastern Aleutian Islands, and central Gulf of Alaska. Areas used by sea lions during summer months (June, July, and August) were demarcated using satellite telemetry data and characterized by environmental variables (sea surface temperature [SST] and chlorophyll a [chl a]), which possibly serve as proxies for environmental processes or prey. Spatial patterns of SST diversity and Steller sea lion population trends among regions were fairly consistent with trends reported for diet studies, possibly indicating a link between environmental diversity, prey diversity, and distribution or abundance of Steller sea lions. Overall, maximum spatial heterogeneity coupled with minimal temporal variability of SST appeared to be beneficial for Steller sea lions. In contrast, these patterns were not consistent for chl a, and there appeared to be an ecological threshold. Understanding how Steller sea lions respond to measures of environmental heterogeneity will ultimately be useful for implementing ecosystem management approaches and developing additional conservation strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Characterization of the polygenic and polymorphic features of the Steller sea lion major histocompatibility complex (MHC) provides an ideal window for evaluating immunologic vigor of the population and identifying emergence of new genotypes that reflect ecosystem pressures. MHC genotyping can be used to measure the potential immunologic vigor of a population. However, since ecosystem-induced changes to MHC genotype can be slow to emerge, measurement of differential expression of these genes can potentially provide real-time evidence of immunologic perturbations. MHC DRB genes were cloned and sequenced using peripheral blood mononuclear leukocytes derived from 10 Steller sea lions from Southeast Alaska, Prince William Sound, and the Aleutian Islands. Nine unique DRB gene sequences were represented in each of 10 animals. MHC DRB gene expression was measured in a subset of six sea lions. Although DRB in genomic DNA was identical in all individuals, relative levels of expressed DRB mRNA was highly variable. Selective suppression of MHC DRB genes could be indicative of geographically disparate environmental pressures, thereby serving as an immediate and sensitive indicator of population and ecosystem health.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymerase chain reaction techniques were developed and applied to identify DNA from .40 species of prey contained in fecal (scat) soft-part matrix collected at terrestrial sites used by Steller sea lions (Eumetopias jubatus) in British Columbia and the eastern Aleutian Islands, Alaska. Sixty percent more fish and cephalopod prey were identified by morphological analyses of hard parts compared with DNA analysis of soft parts (hard parts identified higher relative proportions of Ammodytes sp., Cottidae, and certain Gadidae). DNA identified 213 prey occurrences, of which 75 (35%) were undetected by hard parts (mainly Salmonidae, Pleuronectidae, Elasmobranchii, and Cephalopoda), and thereby increased species occurrences by 22% overall and species richness in 44% of cases (when comparing 110 scats that amplified prey DNA). Prey composition was identical within only 20% of scats. Overall, diet composition derived from both identification techniques combined did not differ significantly from hard-part identification alone, suggesting that past scat-based diet studies have not missed major dietary components. However, significant differences in relative diet contributions across scats (as identified using the two techniques separately) reflect passage rate differences between hard and soft digesta material and highlight certain hypothesized limitations in conventional morphological-based methods (e.g., differences in resistance to digestion, hard part regurgitation, partial and secondary prey consumption), as well as potential technical issues (e.g., resolution of primer efficiency and sensitivity and scat subsampling protocols). DNA analysis of salmon occurrence (from scat soft-part matrix and 238 archived salmon hard parts) provided species-level taxonomic resolution that could not be obtained by morphological identification and showed that Steller sea lions were primarily consuming pink (Oncorhynchus gorbuscha) and chum (Oncorhynchus keta) salmon. Notably, DNA from Atlantic salmon (Salmo salar) that likely originated from a distant fish farm was also detected in two scats from one site in the eastern Aleutian Islands. Overall, molecular techniques are valuable for identifying prey in the fecal remains of marine predators. Combining DNA and hard-part identification will effectively alleviate certain predicted biases and will ultimately enhance measures of diet richness, fisheries interactions (especially salmon-related ones), and the ecological role of pinnipeds and other marine predators, to the benefit of marine wildlife conservationists and fisheries managers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kelp forests are phyletically diverse, structurally complex and highly productive components of cold-water rocky marine coastlines. This paper reviews the conditions in which kelp forests develop globally and where, why and at what rate they become deforested. The ecology and long archaeological history of kelp forests are examined through case studies from southern California, the Aleutian Islands and the western North Atlantic, well-studied locations that represent the widest possible range in kelp forest biodiversity. Global distribution of kelp forests is physiologically constrained by light at high latitudes and by nutrients, warm temperatures and other macrophytes at low latitudes. Within mid-latitude belts (roughly 40-60degrees latitude in both hemispheres) well-developed kelp forests are most threatened by herbivory, usually from sea urchins. Overfishing and extirpation of highly valued vertebrate apex predators often triggered herbivore population increases, leading to widespread kelp deforestation. Such deforestations have the most profound and lasting impacts on species-depauperate systems, such as those in Alaska and the western North Atlantic. Globally urchin-induced deforestation has been increasing over the past 2-3 decades. Continued fishing down of coastal food webs has resulted in shifting harvesting targets from apex predators to their invertebrate prey, including kelp-grazing herbivores. The recent global expansion of sea urchin harvesting has led to the widespread extirpation of this herbivore, and kelp forests have returned in some locations but, for the first time, these forests are devoid of vertebrate apex predators. In the western North Atlantic, large predatory crabs have recently filled this void and they have become the new apex predator in this system. Similar shifts from fish- to crab-dominance may have occurred in coastal zones of the United Kingdom and Japan, where large predatory finfish were extirpated long ago. Three North American case studies of kelp forests were examined to determine their long history with humans and project the status of future kelp forests to the year 2025. Fishing impacts on kelp forest systems have been both profound and much longer in duration than previously thought. Archaeological data suggest that coastal peoples exploited kelp forest organisms for thousands of years, occasionally resulting in localized losses of apex predators, outbreaks of sea urchin populations and probably small-scale deforestation. Over the past two centuries, commercial exploitation for export led to the extirpation of sea urchin predators, such as the sea otter in the North Pacific and predatory fishes like the cod in the North Atlantic. The largescale removal of predators for export markets increased sea urchin abundances and promoted the decline of kelp forests over vast areas. Despite southern California having one of the longest known associations with coastal kelp forests, widespread deforestation is rare. It is possible that functional redundancies among predators and herbivores make this most diverse system most stable. Such biodiverse kelp forests may also resist invasion from non-native species. In the species-depauperate western North Atlantic, introduced algal competitors carpet the benthos and threaten future kelp dominance. There, other non-native herbivores and predators have become established and dominant components of this system. Climate changes have had measurable impacts on kelp forest ecosystems and efforts to control the emission of greenhouse gasses should be a global priority. However, overfishing appears to be the greatest manageable threat to kelp forest ecosystems over the 2025 time horizon. Management should focus on minimizing fishing impacts and restoring populations of functionally important species in these systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasing atmospheric CO2 concentrations are potentially affecting marine ecosystems twofold, by warming and acidification. The rising amount of CO2 taken up by the ocean lowers the saturation state of calcium carbonate, complicating the formation of this key biomineral used by many marine organisms to build hard parts like skeletons or shells. Reliable time-series data of seawater pH are needed to evaluate the ongoing change and compare long-term trends and natural variability. For the high-latitude ocean, the region facing the strongest CO2 uptake, such time-series data are so far entirely lacking. Our study provides, to our knowledge, the first reconstruction of seasonal cycle and long-term trend in pH for a high-latitude ocean obtained from 2D images of stable boron isotopes from a coralline alga.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Behring's Sea and Arctic Ocean : from surveys of the U.S. North Pacific Surveying Expedition in 1855, Commander John Rodgers U.S.N. commanding and from Russian and English authorities, J.C.P. de Kraft, commodore U.S.N. Hydrographer to the Bureau of Navigation ; compiled by E.R. Knorr ; drawn by Louis Waldecker. Corr. & additions to Jan. 1882. It was published by U.S. Navy, Hydrographic Office in 1882. Scale [ca. 1:4,400,000]. Covers the Bering Sea and Arctic Ocean region. The image inside the map neatline is georeferenced to the surface of the earth and fit to a non-standard 'Mercator' projection with the central meridian at 180 degrees west. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. Note: The central meridian of this map is not the same as the Prime Meridian and may wrap the International Date Line or overlap itself when displayed in GIS software. This map shows features such as drainage, cities and other human settlements, territorial boundaries, expedition routes, shoreline features, bays, harbors, islands, rocks, and more. Relief shown by hachures and spot heights. Depths shown by soundings. Includes drawing of Wrangel Island "as seen from Bark Nile of New London ... ; 15 to 18 miles distant". This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection and the Harvard University Library as part of the Open Collections Program at Harvard University project: Organizing Our World: Sponsored Exploration and Scientific Discovery in the Modern Age. Maps selected for the project correspond to various expeditions and represent a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

"Aleut-English dictionary, compiled by Richard Henry Geoghegan. A vocabulary of the Aleutian or Unangan language as spoken on the eastern Aleutian Islands and on the Alaska Peninsula, being a translation of the Russian, 'Slovarʹ aleutsko-lisʹevskago yazyka' or 'Dictionary of the Aleut-Fox language', by Ivan Veniaminov, 1834, with additions and annotations by the compiler": p. 89-124.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tsar Peter the Great ruled Russia between 1689 and 1725. Its domains, stretching from the Baltic Sea in the west to the Pacific Ocean in the east. From north to south, its empire stretching from the Arctic Ocean to the borders with China and India. Tsar Peter I tried to extend the geographical knowledge of his government and the rest of the world. He was also interested in the expansion of trade in Russia and in the control of trade routes. Feodor Luzhin and Ivan Yeverinov explored the eastern border of the Russian Empire, the trip between 1719 and 1721 and reported to the Tsar. They had crossed the peninsula of Kamchatka, from west to east and had traveled from the west coast of Kamchatka to the Kuril Islands. The information collected led to the first map of Kamchatka and the Kuril Islands. Tsar Peter ordered Bering surf the Russian Pacific coast, build ships and sail the seas north along the coast to regions of America. The second expedition found equal to those of the previous explorers difficulties. Two ships were eventually thrown away in Okhotsk in 1740. The explorers spent the winter of 1740-1741 stockpiling supplies and then navigate to Petropavlovsk. The two ships sailed eastward and did together until June 20, then separated by fog. After searching Chirikov and his boat for several days, Bering ordered the San Pedro continue to the northeast. There the Russian sailors first sighted Alaska. According to the log, "At 12:30 (pm July 17) in sight of snow-capped mountains and between them a high volcano." This finding came the day of St. Elijah and so named the mountain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La croissance du phytoplancton est limitée par les faibles concentrations de fer (Fe) dans près de 40% de l’océan mondial. Le Pacifique subarctique Nord-Est représente une de ces zones limitées en fer et désignées High Nutrient - Low Chlorophyll (HNLC). Cet écosystème, dominé par des cellules de petite taille telles les prymnésiophytes, est caractérisé par de très faibles concentrations estivales de chlorophylle a et de fortes concentrations de macronutriments. Il a été maintes fois démontré que les ajouts de fer, sous différentes formes chimiques (habituellement FeSO4), dans les zones HNLC, stimulent la croissance et modifient la structure des communautés planctoniques en favorisant la croissance des cellules de grande taille, notamment les diatomées. Ces effets sur la communauté planctonique ont le potentiel d’influencer les grands mécanismes régulateurs du climat, tels la pompe biologique de carbone et la production de diméthylsulfure (DMS). Les poussières provenant des déserts du nord de la Chine sont reconnues depuis longtemps comme une source sporadique importante de fer pour le Pacifique Nord-Est. Malgré leur importance potentielle, l’influence directe exercée par ces poussières sur l’écosystème planctonique de cette zone HNLC n’a jamais été étudiée. Il s’agit d’une lacune importante puisque le fer associé aux poussières est peu soluble dans l’eau de mer, que la proportion biodisponible n’est pas connue et que les poussières peuvent avoir un effet inhibiteur chez le phytoplancton. Cette thèse propose donc, dans un premier temps, de mesurer pour la première fois l’effet de la fertilisation de la communauté planctonique du Pacifique Nord-Est par un gradient de concentrations de poussières désertiques naturelles. Cette première expérimentation a démontré que le fer contenu dans les poussières asiatiques est biodisponible et qu’une déposition équivalente à celles prenant place au printemps dans le Pacifique Nord-Est peut résulter en une stimulation significative de la prise de nutriments et de la croissance du phytoplancton. Mes travaux ont également montré que l’ajout de 0,5 mg L-1 de poussières peut résulter en la production d’autant de biomasse algale que l’ajout de FeSO4, l’espèce chimique utilisée lors des expériences d’enrichissement en fer à grande échelle. Cependant, les ajouts de FeSO4 favorisent davantage les cellules de petite taille que les ajouts de poussières, observation démontrant que le FeSO4 n’est pas un proxy parfait des poussières asiatiques. Dans un deuxième temps, je me suis intéressée à une source alternative de fer atmosphérique, les cendres volcaniques. Mon intérêt pour cette source de fer a été attisé par les observations d’une floraison spectaculaire dans le Pacifique Nord-Est, ma région d’étude, associée à l’éruption de 2008 du volcan Kasatochi dans les îles Aléoutiennes. Forte de mon expérience sur les poussières, j’ai quantifié l’effet direct de ces cendres volcaniques sur la communauté planctonique du Pacifique Nord-Est. Mes résultats ont montré que le fer contenu dans les cendres volcaniques est également biodisponible pour le phytoplancton. Ils ont également montré que cette source de fer peut être aussi importante que les poussières désertiques dans la régulation de la croissance du phytoplancton dans cette partie de l’océan global à l’échelle millénaire. Dans un troisième temps, j’ai estimé comment l’acidification des océans modulera les réponses des communautés planctoniques aux dépositions naturelles de fer mises en évidence lors de mes expériences précédentes. Pour ce faire, j’ai effectué des enrichissements de poussière dans de l’eau de mer au pH actuel de 8.0 et dans l’eau de mer acidifiée à un pH de 7.8. Mes résultats ont montré une diminution du taux de croissance du phytoplancton dans le milieu acidifié mais pas de changement notable dans la structure de la communauté. Les ajouts de poussières et de cendres, de même que les variations de pH, n’ont pas eu d’effet significatif sur la production de DMS et de son précurseur le diméthylsulfoniopropionate (DMSP), probablement en raison de la courte durée (4 jours) des expériences. L’ensemble des résultats de cette thèse montre que le fer contenu dans diverses sources atmosphériques naturelles est biodisponible pour le phytoplancton du Pacifique Nord-Est et que des taux de déposition réalistes peuvent stimuler la croissance de manière notable dans les premiers jours suivant une tempête désertique ou une éruption volcanique. Finalement, les résultats de mes expériences à stresseurs multiples Fer/acidification suggèrent une certaine résistance des communautés phytoplanctoniques à la diminution du pH prédite d’ici la fin du siècle pour les eaux de surface des océans.