996 resultados para Air Handling Unit
Resumo:
Mode of access: Internet.
Resumo:
"2 November 1987."
Resumo:
Includes index.
Resumo:
Includes index.
Resumo:
"June 1992."
Resumo:
Includes index.
Resumo:
"May 1993."
Resumo:
The Mine Improvement and New Emergency Response (MINER) Act of 2006 implemented new regulations in the underground coal mining industry that allow for the certification of non-compressed gas equipment for respiratory protection in underground coal mines. NASA’s Kennedy Space Center (KSC) Biomedical Research and Engineering Laboratory (BRL) is investigating the potential to expand cryogenic air supply systems into the mining and general industries. These investigations have, so far, resulted in four separate comparison and hardware development programs. The Propellant Handlers Ensemble (PHE) and Level “A” Ensemble Comparison (LAE): This study compared worker thermal stress while using the industry standard Level A hazardous material handling ensemble as opposed to using the similarly protective Propellant Handler’s Ensemble (PHE) that utilizes a cryogenic air supply pack, known as an Environmental Control Unit (ECU) as opposed to the compressed air Self Contained Breathing Apparatus (SCBA) used in the LAE. The research found that, in a 102°F environment, test subjects experienced significantly decreased body temperature increases, significantly decreased heart rate increases, and decreased sweat loss while performing a standard work routine while using the PHE, compared to the same test subjects performing the same routine while using the LAE. The Cryogenic Refuge Alternative Supply System (CryoRASS) project: The MINER Act of 2006 requires the operators of underground coal mines to provide refuge alternatives that can provide a safe atmosphere for workers for up to 96 hours in the event of a mine emergency. The CryoRASS project retrofitted an existing refuge chamber with a liquid air supply instead of the standard compressed air supply system and performed a 96 hour test. The CryoRASS system demonstrated that it provided a larger air supply in a significantly smaller footprint area, provided humidity and temperature control, and maintained acceptable oxygen and carbon dioxide levels in the chamber for the required amount of time. SCBA and Mine Rescue System (CryoBA/CryoASFS) Another requirement of the MINER Act is that additional emergency breathing equipment must be staged along evacuation routes to supplement the Self Contained/Self Rescue (SCSR) devices that are now required. The BRL has developed an SCBA known as the Cryogenic Breathing Apparatus (CryoBA), that has the ability to provide 2 hours of breathing air, a refill capability, and some cooling for the user. Cryogenic Air Storage and Filling Stations (CryoASFS) would be positioned in critical areas to extend evacuation time. The CryoASFS stations have a significantly smaller footprint and larger air storage capacity to similar compressed air systems. The CryoBA pack is currently undergoing NIOSH certification testing. Technical challenges associated with liquid breathing air systems: Research done by the BRL has also addressed three major technical challenges involved with the widespread use of liquid breathing air. The BRL developed a storage Dewar fitted with a Cryorefrigerator that has stored liquid air for four months with no appreciable oxygen enrichment due to differential evaporation. Testing of liquid breathing air was material and time intensive. A BRL contract developed a system that only required 1 liter of air and five minutes of time compared to the 10 liters of air and 75 minutes of time required by the old method. The BRL also developed a simple and cost effective method of manufacturing liquid air that joins a liquid oxygen tanker with a liquid nitrogen tanker through an orifice controlled “Y” fitting, mixing the two components, and depositing the mixed breathing air in a separate tanker.
Resumo:
The use of computational fluid dynamics simulations for calibrating a flush air data system is described, In particular, the flush air data system of the HYFLEX hypersonic vehicle is used as a case study. The HYFLEX air data system consists of nine pressure ports located flush with the vehicle nose surface, connected to onboard pressure transducers, After appropriate processing, surface pressure measurements can he converted into useful air data parameters. The processing algorithm requires an accurate pressure model, which relates air data parameters to the measured pressures. In the past, such pressure models have been calibrated using combinations of flight data, ground-based experimental results, and numerical simulation. We perform a calibration of the HYFLEX flush air data system using computational fluid dynamics simulations exclusively, The simulations are used to build an empirical pressure model that accurately describes the HYFLEX nose pressure distribution ol cr a range of flight conditions. We believe that computational fluid dynamics provides a quick and inexpensive way to calibrate the air data system and is applicable to a broad range of flight conditions, When tested with HYFLEX flight data, the calibrated system is found to work well. It predicts vehicle angle of attack and angle of sideslip to accuracy levels that generally satisfy flight control requirements. Dynamic pressure is predicted to within the resolution of the onboard inertial measurement unit. We find that wind-tunnel experiments and flight data are not necessary to accurately calibrate the HYFLEX flush air data system for hypersonic flight.
Resumo:
INTRODUCTION: This study aimed to isolate and identify Candida spp. from the environment, health practitioners, and patients with the presumptive diagnosis of candidiasis in the Pediatric Unit at the Universitary Hospital of the Jundiaí Medical College, to verify the production of enzymes regarded as virulence factors, and to determine how susceptible the isolated samples from patients with candidiasis are to antifungal agents. METHODS: Between March and November of 2008 a total of 283 samples were taken randomly from the environment and from the hands of health staff, and samples of all the suspected cases of Candida spp. hospital-acquired infection were collected and selected by the Infection Control Committee. The material was processed and the yeast genus Candida was isolated and identified by physiological, microscopic, and macroscopic attributes. RESULTS: The incidence of Candida spp. in the environment and employees was 19.2%. The most frequent species were C. parapsilosis and C. tropicalis among the workers, C. guilliermondii and C. tropicalis in the air, C. lusitanae on the contact surfaces, and C. tropicalis and C. guilliermondii in the climate control equipment. The college hospital had 320 admissions, of which 13 (4%) presented Candida spp. infections; three of them died, two being victims of a C. tropicalis infection and the remaining one of C. albicans. All the Candida spp. in the isolates evidenced sensitivity to amphotericin B, nystatin, and fluconazole. CONCLUSIONS: The increase in the rate of hospital-acquired infections caused by Candida spp. indicates the need to take larger measures regarding recurrent control of the environment.
Resumo:
Pirarucu (Arapaima gigas) is an obligatory air-breathing fish from the Amazon basin. Previous study showed that pirarucu juveniles present a latency period in their response to moderate stress (transportation). Therefore the objective of this study was to verify the effects of a prolonged air exposure stress in lactate, glucose, cortisol, haematocrit, haemoglobin, and liver glycogen in pirarucu. Thirty-six fish were handled by netting and subjected to air exposure for 75-min. Six fish were sampled before handling and at 0, 6, 24, 48, and 96h after handling. Fish cortisol, lactate and haematocrit rose after handling, returning to previous unstressed values on the following sampling (6h after handling). Glucose increased significantly after handling and that was maintained for 24 h. There were no changes in haemoglobin and liver glycogen as a consequence of handling. The results demonstrate a quick response when exposed to an acute stressor and a fast recovery, suggesting that pirarucu does not use their glycogen reserves during an acute stress. The results suggest that pirarucu exhibit physiological stress responses to handling similar in magnitude to those previously documented for many teleostean fishes, including salmonids.
Resumo:
Dissertação de mestrado em Engenharia Mecatrónica
Resumo:
Hypoglycemia, if recurrent, may have severe consequences on cognitive and psychomotor development of neonates. Therefore, screening for hypoglycemia is a daily routine in every facility taking care of newborn infants. Point-of-care-testing (POCT) devices are interesting for neonatal use, as their handling is easy, measurements can be performed at bedside, demanded blood volume is small and results are readily available. However, such whole blood measurements are challenged by a wide variation of hematocrit in neonates and a spectrum of normal glucose concentration at the lower end of the test range. We conducted a prospective trial to check precision and accuracy of the best suitable POCT device for neonatal use from three leading companies in Europe. Of the three devices tested (Precision Xceed, Abbott; Elite XL, Bayer; Aviva Nano, Roche), Aviva Nano exhibited the best precision. None completely fulfilled the ISO-accuracy-criteria 15197: 2003 or 2011. Aviva Nano fulfilled these criteria in 92% of cases while the others were <87%. Precision Xceed reached the 95% limit of the 2003 ISO-criteria for values ≤4.2 mmol/L, but not for the higher range (71%). Although validated for adults, new POCT devices need to be specifically evaluated on newborn infants before adopting their routine use in neonatology.
Resumo:
The members of the genus Acinetobacter are Gram-negative cocobacilli that are frequently found in the environment but also in the hospital setting where they have been associated with outbreaks of nosocomial infections. Among them, Acinetobacter baumannii has emerged as the most common pathogenic species involved in hospital-acquired infections. One reason for this emergence may be its persistence in the hospital wards, in particular in the intensive care unit; this persistence could be partially explained by the capacity of these microorganisms to form biofilm. Therefore, our main objective was to study the prevalence of the two main types of biofilm formed by the most relevant Acinetobacter species, comparing biofilm formation between the different species. Findings: Biofilm formation at the air-liquid and solid-liquid interfaces was investigated in different Acinetobacter spp. and it appeared to be generally more important at 25°C than at 37°C. The biofilm formation at the solid-liquid interface by the members of the ACB-complex was at least 3 times higher than the other species (80-91% versus 5-24%). In addition, only the isolates belonging to this complex were able to form biofilm at the air-liquid interface; between 9% and 36% of the tested isolates formed this type of pellicle. Finally, within the ACB-complex, the biofilm formed at the air-liquid interface was almost 4 times higher for A. baumannii and Acinetobacter G13TU than for Acinetobacter G3 (36%, 27% & 9% respectively). Conclusions: Overall, this study has shown the capacity of the Acinetobacter spp to form two different types of biofilm: solid-liquid and air-liquid interfaces. This ability was generally higher at 25°C which might contribute to their persistence in the inanimate hospital environment. Our work has also demonstrated for the first time the ability of the members of the ACB-complex to form biofilm at the air-liquid interface, a feature that was not observed in other Acinetobacter species.
Resumo:
BACKGROUND The members of the genus Acinetobacter are Gram-negative cocobacilli that are frequently found in the environment but also in the hospital setting where they have been associated with outbreaks of nosocomial infections. Among them, Acinetobacter baumannii has emerged as the most common pathogenic species involved in hospital-acquired infections. One reason for this emergence may be its persistence in the hospital wards, in particular in the intensive care unit; this persistence could be partially explained by the capacity of these microorganisms to form biofilm. Therefore, our main objective was to study the prevalence of the two main types of biofilm formed by the most relevant Acinetobacter species, comparing biofilm formation between the different species. FINDINGS Biofilm formation at the air-liquid and solid-liquid interfaces was investigated in different Acinetobacter spp. and it appeared to be generally more important at 25°C than at 37°C. The biofilm formation at the solid-liquid interface by the members of the ACB-complex was at least 3 times higher than the other species (80-91% versus 5-24%). In addition, only the isolates belonging to this complex were able to form biofilm at the air-liquid interface; between 9% and 36% of the tested isolates formed this type of pellicle. Finally, within the ACB-complex, the biofilm formed at the air-liquid interface was almost 4 times higher for A. baumannii and Acinetobacter G13TU than for Acinetobacter G3 (36%, 27% & 9% respectively). CONCLUSIONS Overall, this study has shown the capacity of the Acinetobacter spp to form two different types of biofilm: solid-liquid and air-liquid interfaces. This ability was generally higher at 25°C which might contribute to their persistence in the inanimate hospital environment. Our work has also demonstrated for the first time the ability of the members of the ACB-complex to form biofilm at the air-liquid interface, a feature that was not observed in other Acinetobacter species.