968 resultados para Agricultural and forest meteorology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The long-range transport of Ambrosia pollen to Poland is intermittent and mainly related to the passage of air masses over the Carpathian and Sudetes mountains. These episodes are associated with hot dry weather, a deep Planetary Boundary Layer (PBL) in the source areas and winds from the south. Such episodes can transport significant amounts of Ambrosia pollen into Poland. The study investigates Ambrosia pollen episodes at eight sites in Poland during the period 7th to 10th September 2005, by examining temporal variations in Ambrosia pollen and back-trajectories. PBL depths in the likely source areas were calculated with the Eta meteorological model and evaluated against the mountain heights. Considerable amounts of Ambrosia pollen were recorded at several monitoring sites during the night or early in the morning of the investigated period. Trajectory analyses shows that the air masses arriving at the Polish sites predominantly came from the south, and were in the Czech Republic, Slovakia and Hungary the previous day indicating these countries as potential source areas. We have shown the progress of Ambrosia plumes into Poland from the south of the country, probably from Slovakia and Hungary, and demonstrated how Lagrangian back-trajectory models and meteorological models can be used to identify possible transport mechanisms of Ambrosia pollen from potential source regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present here a simple methodology for calculating species inventories for allergenic pollen that can be used by atmospheric transport models. Ragweed (Ambrosia) species distribution or infection level on the Pannonian Plain has been used as an example of how the methodology can be used. The Pannonian Plain is one of the three main regions in Europe recognized as being polluted by Ambrosia. The methodology relies on spatial variations in annual Ambrosia pollen counts, knowledge on ragweed ecology and detailed land cover information. The results of this analysis showed that some of the highest mean annual ragweed pollen concentrations were witnessed around Kecskemét in central Hungary and Novi Sad in northern Serbia. These areas are also the areas with the highest density of Ambrosia habitats. The resulting inventory can be entered into atmospheric transport models in combination with other components such as a phenological model and a model for daily pollen release, in order to simulate the movement of ragweed pollen from the Pannonian Plain. The methodology is likely to be generally applicable for creating inventories of species distribution of allergenic plants. The main requirement is availability of: detailed land cover information; pollen indexes; a list of the most important habitats; and a region of interest that is mainly influenced by local sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pollen grains of ragweed are important aeroallergens that have the potential to be transported longdistances through the air. The arrival of ragweed pollen in Nordic countries from the Pannonian Plain canoccur when certain conditions are met, which this study aims to describe for the first time. Atmosphericragweed pollen concentrations were collected at 16 pollen-monitoring sites. Other factors included inthe analysis were the overall synoptic weather situation, surface wind speeds, wind direction and tem-peratures as well as examining regional scale orography and satellite observations. Hot and dry weatherin source areas on the Pannonian Plain aid the release of ragweed pollen during the flowering seasonand result in the deep Planetary Boundary Layers needed to lift the pollen over the Carpathian Moun-tains to the north. Suitable synoptic conditions are also required for the pollen bearing air masses tomove northward. These same conditions produce the jet-effect Kosava and orographic foehn winds thataid the release and dispersal of ragweed pollen and contribute towards its movement into Poland andbeyond.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty-five small soil-filled perspex boxes arranged in a square, with dwarf sunflowers growing in them, were used to study micro-scale advection. Hydrological heterogeneity was introduced by applying two different amounts of irrigation water (low-irrigation, L, versus high-irrigation, H). The nine central boxes (4 H, 4 L and I bare box) were precision weighing lysimeters, yielding diurnal measurements of evaporation. After the onset of soil water stress, a large difference in latent heat flux (up to 4-fold) was observed between the lysimeters of the H and L treatments, mainly caused by large differences between H and L stomatal conductance values. This resulted in micro-advection, causing H soil-sunflower systems to evaporate well above equilibrium latent heat flux. The occurrence of micro-advective enhancement was reflected in large values of the Priestley-Taylor constant (often larger than 2.0) and generally negative values of sensible heat flux for the H treatment. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we pledge that physically based equations should be combined with remote sensing techniques to enable a more theoretically rigorous estimation of area-average soil heat flux, G. A standard physical equation (i.e. the analytical or exact method) for the estimation of G, in combination with a simple, but theoretically derived, equation for soil thermal inertia (F), provides the basis for a more transparent and readily interpretable method for the estimation of G; without the requirement for in situ instrumentation. Moreover, such an approach ensures a more universally applicable method than those derived from purely empirical studies (employing vegetation indices and albedo, for example). Hence, a new equation for the estimation of Gamma(for homogeneous soils) is discussed in this paper which only requires knowledge of soil type, which is readily obtainable from extant soil databases and surveys, in combination with a coarse estimate of moisture status. This approach can be used to obtain area-averaged estimates of Gamma(and thus G, as explained in paper II) which is important for large-scale energy balance studies that employ aircraft or satellite data. Furthermore, this method also relaxes the instrumental demand for studies at the plot and field scale (no requirement for in situ soil temperature sensors, soil heat flux plates and/or thermal conductivity sensors). In addition, this equation can be incorporated in soil-vegetation-atmosphere-transfer models that use the force restore method to update surface temperatures (such as the well-known ISBA model), to replace the thermal inertia coefficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For vegetated surfaces, calculation of soil heat flux, G, with the Exact or Analytical method requires a harmonic analysis of below-canopy soil surface temperature, to obtain the shape of the diurnal course of G. When determining G with remote sensing methods, only composite (vegetation plus soil) radiometric brightness temperature is available. This paper presents a simple equation that relates the sum of the harmonic terms derived for the composite radiometric surface temperature to that of belowcanopy soil surface temperature. The thermal inertia, Gamma(,) for which a simple equation has been presented in a companion paper, paper I, is used to set the magnitude of G. To assess the success of the method proposed in this paper for the estimation of the diurnal shape of G, a comparison was made between 'remote' and in situ calculated values from described field sites. This indicated that the proposed method was suitable for the estimation of the shape of G for a variety of vegetation types and densities. The approach outlined in paper I, to obtain Gamma, was then combined with the estimated harmonic terms to predict estimates of G, which were compared to values predicted by empirical remote methods found in the literature. This indicated that the method proposed in the combination of papers I and II gave reliable estimates of G, which, in comparison to the other methods, resulted in more realistic predictions for vegetated surfaces. This set of equations can also be used for bare and sparsely vegetated soils, making it a universally applicable method. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brief periods of high temperature which occur near flowering can severely reduce the yield of annual crops such as wheat and groundnut. A parameterisation of this well-documented effect is presented for groundnut (i.e. peanut; Arachis hypogaeaL.). This parameterisation was combined with an existing crop model, allowing the impact of season-mean temperature, and of brief high-temperature episodes at various times near flowering, to be both independently and jointly examined. The extended crop model was tested with independent data from controlled environment experiments and field experiments. The impact of total crop duration was captured, with simulated duration being within 5% of observations for the range of season-mean temperatures used (20-28 degrees C). In simulations across nine differently timed high temperature events, eight of the absolute differences between observed and simulated yield were less than 10% of the control (no-stress) yield. The parameterisation of high temperature stress also allows the simulation of heat tolerance across different genotypes. Three parameter sets, representing tolerant, moderately sensitive and sensitive genotypes were developed and assessed. The new parameterisation can be used in climate change studies to estimate the impact of heat stress on yield. It can also be used to assess the potential for adaptation of cropping systems to increased temperature threshold exceedance via the choice of genotype characteristics. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a method that employs Earth Observation (EO) data to calculate spatiotemporal estimates of soil heat flux, G, using a physically-based method (the Analytical Method). The method involves a harmonic analysis of land surface temperature (LST) data. It also requires an estimate of near-surface soil thermal inertia; this property depends on soil textural composition and varies as a function of soil moisture content. The EO data needed to drive the model equations, and the ground-based data required to provide verification of the method, were obtained over the Fakara domain within the African Monsoon Multidisciplinary Analysis (AMMA) program. LST estimates (3 km × 3 km, one image 15 min−1) were derived from MSG-SEVIRI data. Soil moisture estimates were obtained from ENVISAT-ASAR data, while estimates of leaf area index, LAI, (to calculate the effect of the canopy on G, largely due to radiation extinction) were obtained from SPOT-HRV images. The variation of these variables over the Fakara domain, and implications for values of G derived from them, were discussed. Results showed that this method provides reliable large-scale spatiotemporal estimates of G. Variations in G could largely be explained by the variability in the model input variables. Furthermore, it was shown that this method is relatively insensitive to model parameters related to the vegetation or soil texture. However, the strong sensitivity of thermal inertia to soil moisture content at low values of relative saturation (<0.2) means that in arid or semi-arid climates accurate estimates of surface soil moisture content are of utmost importance, if reliable estimates of G are to be obtained. This method has the potential to improve large-scale evaporation estimates, to aid land surface model prediction and to advance research that aims to explain failure in energy balance closure of meteorological field studies.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eddy-covariance measurements of net ecosystem exchange of CO(2) (NEE) and estimates of gross ecosystem productivity (GEP) and ecosystem respiration (R(E)) were obtained in a 2-4 year old Eucalyptus plantation during two years with very different winter rainfall In the first (drier) year the annual NEE GEP and RE were lower than the sums in the second (normal) year and conversely the total respiratory costs of assimilated carbon were higher in the dry year than in the normal year Although the net primary production (NPP) in the first year was 23% lower than that of the second year the decrease in the carbon use efficiency (CUE = NPP/GEP) was 11% and autotrophic respiration utilized more resources in the first dry year than in the second normal year The time variations in NEE were followed by NPP because in these young Eucalyptus plantations NEE is very largely dominated by NPP and heterotrophic respiration plays only a relatively minor role During the dry season a pronounced hysteresis was observed in the relationship between NEE and photosynthetically active radiation and NEE fluxes were inversely proportional to humidity saturation deficit values greater than 0 8 kPa Nighttime fluxes of CO(2) during calm conditions when the friction velocity (u) was below the threshold (0 25 ms(-1)) were estimated based on a Q(10) temperature-dependence relationship adjusted separately for different classes of soil moisture content which regulated the temperature sensitivity of ecosystem respiration (C) 2010 Elsevier B V All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leaf area index (LAI) is a key parameter that affects the surface fluxes of energy, mass, and momentum over vegetated lands, but observational measurements are scarce, especially in remote areas with complex canopy structure. In this paper we present an indirect method to calculate the LAI based on the analyses of histograms of hemispherical photographs. The optimal threshold value (OTV), the gray-level required to separate the background (sky) and the foreground (leaves), was analytically calculated using the entropy crossover method (Sahoo, P.K., Slaaf, D.W., Albert, T.A., 1997. Threshold selection using a minimal histogram entropy difference. Optical Engineering 36(7) 1976-1981). The OTV was used to calculate the LAI using the well-known gap fraction method. This methodology was tested in two different ecosystems, including Amazon forest and pasturelands in Brazil. In general, the error between observed and calculated LAI was similar to 6%. The methodology presented is suitable for the calculation of LAI since it is responsive to sky conditions, automatic, easy to implement, faster than commercially available software, and requires less data storage. (C) 2008 Elsevier B.V. All rights reserved.