893 resultados para Aggressive incidents inside a Montreal barroom involving patrons
Resumo:
This study reports for the first time the presence of diazotrophic bacteria belonging to the genera Achromobacter and Zoogloea associated with wheat plants. These bacterial strains were identified by the analysis of 16S rDNA sequences. The bacterium IAC-AT-8 was identified as Azospirillum brasiliense, whereas isolates IAC-HT-11 and IAC-HT-12 were identified as Achromobacter insolitus and Zoogloea ramigera, respectively. A greenhouse experiment involving a non-sterilized soil was carried out with the aim to study the endophytic feature of these strains. After 40 days from inoculation, all the strains were in the inner of roots, but they were not detected in soil. In order to assess the location inside wheat plants, an experiment was conducted under axenic conditions. Fifteen days after inoculation, preparations of inoculated plants were observed by the scanning electron microscope, using the cryofracture technique, and by the transmission electron microscope. It was observed that all isolates were present on the external part of the roots and in the inner part at the elongation region, in cortex cells, but not in the endodermis or in the vascular bundle region. No colonizing bacterial cells were observed in wheat leaves.
Resumo:
Scorpion stings are a public health problem in Brazil, with most incidents involving the species Tityus serrulatus. Some T serrulatus toxins may act as immunogens for the production of a specific anti-venom, but many of the component toxins remain poorly characterized. Here, we describe the immunological characteristics of the toxin Ts1 (also known as TsVII and Ts-gamma) and evaluate production of neutralizing antibodies against the crude venom of T serrulatus. Recombinant Ts1 with one copy (Ts1((1))) or two copies in tandem (Ts1((2))) was expressed in BL21 (DE3) cells. Rabbits and mice were immunized with the recombinant proteins (inclusion bodies) and then tested for production of neutralizing antibodies. Neutralization assays showed that anti-Ts1((1)) and anti-Ts1((2)) protected animals challenged with T serrulatus crude venom and native Ts1 Thus, Ts1 could be used in a mixed ""cocktail"" of immunogens for T serrulatus anti-venom production. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A general, fast wavelet-based adaptive collocation method is formulated for heat and mass transfer problems involving a steep moving profile of the dependent variable. The technique of grid adaptation is based on sparse point representation (SPR). The method is applied and tested for the case of a gas–solid non-catalytic reaction in a porous solid at high Thiele modulus. Accurate and convergent steep profiles are obtained for Thiele modulus as large as 100 for the case of slab and found to match the analytical solution.
Resumo:
A piecewise uniform fitted mesh method turns out to be sufficient for the solution of a surprisingly wide variety of singularly perturbed problems involving steep gradients. The technique is applied to a model of adsorption in bidisperse solids for which two fitted mesh techniques, a fitted-mesh finite difference method (FMFDM) and fitted mesh collocation method (FMCM) are presented. A combination (FMCMD) of FMCM and the DASSL integration package is found to be most effective in solving the problems. Numerical solutions (FMFDM and FMCMD) were found to match the analytical solution when the adsorption isotherm is linear, even under conditions involving steep gradients for which global collocation fails. In particular, FMCMD is highly efficient for macropore diffusion control or micropore diffusion control. These techniques are simple and there is no limit on the range of the parameters. The techniques can be applied to a variety of adsorption and desorption problems in bidisperse solids with non-linear isotherm and for arbitrary particle geometry.
Resumo:
This work deals with a solution method to handle multicomponents reversible reactions occurring inside a porous catalyst pellet. The complexity of this problem arises from the fact that the effective diffusivities and Biot number, which characterizes the external mass transfer, are different for each chemical species. In mathematical terms, this means that each chemical species has its own subspace and, therefore, when the technique of finite integral transform is applied to solve this multicomponent problem, each chemical species is associated with its own integral transform kernel. The analytical solutions obtained for this problem are compact and simple for any further manipulation. Application of this result to the catalytic reforming of C7 hydrocarbon system is shown in this paper.
Resumo:
This paper reports the results of an experiment involving a sample of 204 members of the public who were assessed on three occasions about their willingness to pay for the conservation of the mahogany glider. They were asked this question prior to information being provided to them about the glider and other focal wildlife species; after such information was provided, and finally after participants had had an opportunity to see live specimens of this glider. The mean willingness to pay of the relevant samples are compared and found to show significant variations. Theories are considered that help explain the dynamics of these variations. Serious concerns are raised about the capacity of information provision to reveal ‘true’ contingent valuations of public goods.
Resumo:
Instantaneous outbursts in underground coal mines have occurred in at least 16 countries, involving both methane (CH4) and carbon dioxide (CO2). The precise mechanisms of an instantaneous outburst are still unresolved but must consider the effects of stress, gas content and physico-mechanical properties of the coal. Other factors such as mining methods (e.g., development heading into the coal seam) and geological features (e.g., coal seam disruptions from faulting) can combine to exacerbate the problem. Prediction techniques continue to be unreliable and unexpected outburst incidents resulting in fatalities are a major concern for underground coal operations. Gas content thresholds of 9 m(3)/t for CH4 and 6 m(3)/t for CO2 are used in the Sydney Basin, to indicate outburst-prone conditions, but are reviewed on an individual mine basis and in mixed as situations. Data on the sorption behaviour of Bowen Basin coals from Australia have provided an explanation for the conflicting results obtained by coal face desorption indices used for outburst-proneness assessment. A key factor appears to be different desorption rates displayed by banded coals, which is supported by both laboratory and mine-site investigations. Dull coal bands with high fusinite and semifusinite contents tend to display rapid desorption from solid coal, for a given pressure drop. The opposite is true for bright coal bands with high vitrinite contents and dull coal bands with high inertodetrinite contents. Consequently, when face samples of dull, fusinite-or semifusinite-rich coal of small particle size are taken for desorption testing, much gas has already escaped and low readings result. The converse applies for samples taken from coal bands with high vitrinite and/or inertodetrinite contents. In terms of outburst potential, it is the bright, vitrinite-rich and the dull, inertodetrinite-rich sections of a coal seam that appear to be more outburst-prone. This is due to the ability of the solid coal to retain gas, even after pressure reduction, creating a gas content gradient across the coal face sufficient to initiate an outburst. Once the particle size of the coal is reduced, rapid gas desorption can then take place. (C) 1998 Elsevier Science.
Resumo:
The moving finite element collocation method proposed by Kill et al. (1995) Chem. Engng Sci. 51 (4), 2793-2799 for solution of problems with steep gradients is further developed to solve transient problems arising in the field of adsorption. The technique is applied to a model of adsorption in solids with bidisperse pore structures. Numerical solutions were found to match the analytical solution when it exists (i.e. when the adsorption isotherm is linear). The method is simple yet sufficiently accurate for use in adsorption problems, where global collocation methods fail. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Anxiety disorders are among the most common forms of psychopathology reported by children and adolescents. Anxiety disorders in children have debilitating consequences, both for the child and his/her family. In addition, research indicates that, in many cases, these disorders follow a chronic and persistent course. The efficacy of child-focused cognitive-behavioural interventions in the treatment of childhood anxiety disorders has been well demonstrated by recent, well-controlled research. This treatment outcome literature is briefly reviewed. Most recently, however, interventions used in the treatment of childhood anxiety disorders have taken the form of combined interventions aimed both at the anxious child and his or her family. This paper reviews two related bodies of research in presenting a case for the involvement of families in the treatment of childhood anxiety. First, the etiological evidence implicating the families of anxious children in the development and/or maintenance of childhood anxiety is presented. Second, the treatment outcome studies that have empirically evaluated this type of combined intervention are reviewed.
Resumo:
In this study, we examined qualitative and quantitative measures involving the head and face in a sample of patients and well controls drawn from the Brisbane Psychosis Study. Patients with psychosis (n=310) and age and sex-matched controls (n=303) were drawn from a defined catchment area. Features assessed involved hair whorls (position, number, and direction), eyes (epicanthus), supraorbital ridge, ears (low set, protrusion, hypoplasia, ear lobe attachment, asymmetry, helix width), and mouth (palate height and shape, palate ridges, furrowed and bifid tongue). Quantitative measures related to skull size (circumference, width and length) selected facial heights and depths. The impact of selected risk factors (place and season of birth, fathers' occupation at time of birth, selfreported pregnancy and birth complications, family history) were examined in the entire group, while the association between age of onset and dysmorphology was assessed within the patient group. Significant group (cases versus controls) differences included: patients had smaller skull bases, smaller facial heights, larger facial depths, lower set and protruding ears, different palate shape and fewer palate ridges. In the entire sample significant associations included: (a) those with positive family history of mental illness bad smaller head circumference, cranial length and facial heights; (b) pregnancy and birth complications was associated with smaller facial beights: (c) larger head circumference was associated with higher ranked fathers' occupations at birth. Within the patient group, age of onset was significantly lower in those with more qualitative anomalies or with larger facial heights. The group differences were not due to outliers or distinct subgroups, suggesting that the factors responsible for the differences may be subtle and widely dispersed in the patient group. The Stanley Foundation supported this project.
Resumo:
A method involving bubbling of air through a fibrous filter immersed in water has recently been investigated (Agranovski et al. [1]). Experimental results showed that the removal efficiency for ultra-fine aerosols by such filters was greatly increased compared to dry filters. Nuclear Magnetic Resonance (NMR) imaging was used to examine the wet filter and to determine the nature of the gas flow inside the filter (Agranovski et al. [2]). It was found that tortuous preferential pathways (or flow tubes) develop within the filter through which the air flows and the distribution of air and water inside the porous medium has been investigated. The aim of this paper is to investigate the geometry of the pathways and to make estimates of the flow velocities and particle removal efficiency in such pathways. A mathematical model of the flow of air along the preferred pathways has been developed and verified experimentally. Even for the highest realistic gas velocity the flow field was essentially laminar (Re approximate to 250). We solved Laplace's equation for stream function to map trajectories of particles and gas molecules to investigate the possibility of their removal from the carrier.
Resumo:
In modern magnetic resonance imaging (MRI), patients are exposed to strong, rapidly switching magnetic gradient fields that, in extreme cases, may be able to elicit nerve stimulation. This paper presents theoretical investigations into the spatial distribution of induced current inside human tissues caused by pulsed z-gradient fields. A variety of gradient waveforms have been studied. The simulations are based on a new, high-definition, finite-difference time-domain method and a realistic inhomogeneous 10-mm resolution human body model with appropriate tissue parameters. it was found that the eddy current densities are affected not only by the pulse sequences but by many parameters such as the position of the body inside the gradient set, the local biological material properties and the geometry of the body. The discussion contains a comparison of these results with previous results found in the literature. This study and the new methods presented herein will help to further investigate the biological effects caused by the switched gradient fields in a MRI scan. (C) 2002 Wiley Periodicals, Inc.
Resumo:
In stingless bees, recruitment of hive bees to food sources involves thoracic vibrations by foragers during trophallaxis. The temporal pattern of these vibrations correlates with the sugar concentration of the collected food. One possible pathway for transfering such information to nestmates is through airborne sound. In the present study, we investigated the transformation of thoracic vibrations into air particle velocity, sound pressure, and jet airflows in the stingless bee Melipona scutellaris. Whereas particle velocity and sound pressure were found all around and above vibrating individuals, there was no evidence for a jet airflow as with honey bees. The largest particle velocities were measured 5 mm above the wings (16.0 +/- 4.8 mm s(-1)). Around a vibrating individual, we found maximum particle velocities of 8.6 +/- 3.0 mm s(-1) (horizontal particle velocity) in front of the bee`s head and of 6.0 +/- 2.1 mm s(-1) (vertical particle velocity) behind its wings. Wing oscillations, which are mainly responsible for air particle movements in honey bees, significantly contributed to vertically oriented particle oscillations only close to the abdomen in M. scutellaris(distances <= 5 mm). Almost 80% of the hive bees attending trophallactic food transfers stayed within a range of 5 mm from the vibrating foragers. It remains to be shown, however, whether air particle velocity alone is strong enough to be detected by Johnston`s organ of the bee antenna. Taking the physiological properties of the honey bee`s Johnston`s organ as the reference, M. scutellaris hive bees are able to detect the forager vibrations through particle movements at distances of up to 2 cm.