982 resultados para Agent negotiation strategies
Resumo:
This thesis will present strategies for the use of plug-in electric vehicles on smart and microgrids. MATLAB is used as the design tool for all models and simulations. First, a scenario will be explored using the dispatchable loads of electric vehicles to stabilize a microgrid with a high penetration of renewable power generation. Grid components for a microgrid with 50% photovoltaic solar production will be sized through an optimization routine to maintain storage system, load, and vehicle states over a 24-hour period. The findings of this portion are that the dispatchable loads can be used to guard against unpredictable losses in renewable generation output. Second, the use of distributed control strategies for the charging of electric vehicles utilizing an agent-based approach on a smart grid will be studied. The vehicles are regarded as additional loads to a primary forecasted load and use information transfer with the grid to make their charging decisions. Three lightweight control strategies and their effects on the power grid will be presented. The findings are that the charging behavior and peak loads on the grid can be reduced through the use of distributed control strategies.
Resumo:
This article proposes an interactional approach to the question of Russian language maintenance through the activity of bedtime story-reading in Russian-French bilingual families in French speaking Switzerland. Reading stories appears to be a language maintenance strategy commonly employed by the Russian speaking parent. The ritual and recreational moment of story-reading therefore becomes an opportunity for language learning. Drawing upon a language socialization perspective, this paper proposes an interactional analysis of the language use in the activity of story-reading. It shows how the language choice of the participants may be requested, negotiated and challenged during the interaction. The analysis further informs us about the language choice pattern and the bilingual competences in these families. We will gain insight into (Russian) language maintenance as a daily social and linguistic practice.
Resumo:
After the application form is submitted, the interview is the most important method of human resource allocation. Previous research has shown that the attractiveness of interviewees can significantly bias interview outcome. We have previously shown that female interviewers give attractive male interviewees higher status job packages compared their average looking counterparts. However, it is not known whether male interviewers exhibit such biases. In the present study, participants were asked to take part in a mock job negotiation scenario where they had to allocate either a high- or low-status job package to attractive or average looking ``interviewees.'' Before each decision was made, the participant's anticipatory electrodermal response (EDR) was recorded. The results supported our previous finding in that female participants allocated a greater number of high-status job packages to attractive men. Additionally, male participants uniformly allocated a greater number of low-status job packages to both attractive men and attractive women. Overall, the average looking interviewees incurred a penalty and received a significantly greater number of low-status job packages. In general, the EDR profile for both male and female participants was significantly greater when allocating the low-status packages to the average looking interviewees. However, the male anticipatory EDR profile showed the greatest change when allocating attractive women with low-status job packages. We discuss these findings in terms of the potential biases that may occur at the job interview and place them within an evolutionary psychology framework.
Resumo:
Systems of distributed artificial intelligence can be powerful tools in a wide variety of practical applications. Its most surprising characteristic, the emergent behavior, is also the most answerable for the difficulty in. projecting these systems. This work proposes a tool capable to beget individual strategies for the elements of a multi-agent system and thereof providing to the group means on obtaining wanted results, working in a coordinated and cooperative manner as well. As an application example, a problem was taken as a basis where a predators` group must catch a prey in a three-dimensional continuous ambient. A synthesis of system strategies was implemented of which internal mechanism involves the integration between simulators by Particle Swarm Optimization algorithm (PSO), a Swarm Intelligence technique. The system had been tested in several simulation settings and it was capable to synthesize automatically successful hunting strategies, substantiating that the developed tool can provide, as long as it works with well-elaborated patterns, satisfactory solutions for problems of complex nature, of difficult resolution starting from analytical approaches. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
1. Establishing biological control agents in the field is a major step in any classical biocontrol programme, yet there are few general guidelines to help the practitioner decide what factors might enhance the establishment of such agents. 2. A stochastic dynamic programming (SDP) approach, linked to a metapopulation model, was used to find optimal release strategies (number and size of releases), given constraints on time and the number of biocontrol agents available. By modelling within a decision-making framework we derived rules of thumb that will enable biocontrol workers to choose between management options, depending on the current state of the system. 3. When there are few well-established sites, making a few large releases is the optimal strategy. For other states of the system, the optimal strategy ranges from a few large releases, through a mixed strategy (a variety of release sizes), to many small releases, as the probability of establishment of smaller inocula increases. 4. Given that the probability of establishment is rarely a known entity, we also strongly recommend a mixed strategy in the early stages of a release programme, to accelerate learning and improve the chances of finding the optimal approach.
Resumo:
A liberalização do sector eléctrico, e a consequente criação de mercados de energia eléctrica regulados e liberalizados, mudou a forma de comercialização da electricidade. Em particular, permitiu a entrada de empresas nas actividades de produção e comercialização, aumentando a competitividade e assegurando a liberdade de escolha dos consumidores, para decidir o fornecedor de electricidade que pretenderem. A competitividade no sector eléctrico aumentou a necessidade das empresas que o integram a proporem preços mais aliciantes (do que os preços propostos pelos concorrentes), e contribuiu para o desenvolvimento de estratégias de mercado que atraiam mais clientes e aumentem a eficiência energética e económica. A comercialização de electricidade pode ser realizada em mercados organizados ou através de contratação directa entre comercializadores e consumidores, utilizando os contratos bilaterais físicos. Estes contratos permitem a negociação dos preços de electricidade entre os comercializadores e os consumidores. Actualmente, existem várias ferramentas computacionais para fazer a simulação de mercados de energia eléctrica. Os simuladores existentes permitem simulações de transacções em bolsas de energia, negociação de preços através de contratos bilaterais, e análises técnicas a redes de energia. No entanto, devido à complexidade dos sistemas eléctricos, esses simuladores apresentam algumas limitações. Esta dissertação apresenta um simulador de contratos bilaterais em mercados de energia eléctrica, sendo dando ênfase a um protocolo de ofertas alternadas, desenvolvido através da tecnologia multi-agente. Em termos sucintos, um protocolo de ofertas alternadas é um protocolo de interacção que define as regras da negociação entre um agente vendedor (por exemplo um retalhista) e um agente comprador (por exemplo um consumidor final). Aplicou-se o simulador na resolução de um caso prático, baseado em dados reais. Os resultados obtidos permitem concluir que o simulador, apesar de simplificado, pode ser uma ferramenta importante na ajuda à tomada de decisões inerentes à negociação de contratos bilaterais em mercados de electricidade.
Resumo:
The increasing number of players that operate in power systems leads to a more complex management. In this paper a new multi-agent platform is proposed, which simulates the real operation of power system players. MASGriP – A Multi-Agent Smart Grid Simulation Platform is presented. Several consumer and producer agents are implemented and simulated, considering real characteristics and different goals and actuation strategies. Aggregator entities, such as Virtual Power Players and Curtailment Service Providers are also included. The integration of MASGriP agents in MASCEM (Multi-Agent System for Competitive Electricity Markets) simulator allows the simulation of technical and economical activities of several players. An energy resources management architecture used in microgrids is also explained.
Resumo:
All over the world Distributed Generation is seen as a valuable help to get cleaner and more efficient electricity. To get negotiation power and advantages of scale economy, distributed producers can be aggregated giving place to a new concept: the Virtual Power Producer. Virtual Power Producers are multitechnology and multi-site heterogeneous entities. Virtual Power Producers should adopt organization and management methodologies so that they can make Distributed Generation a really profitable activity, able to participate in the market. In this paper we address the development of a multi-agent market simulator – MASCEM – able to study alternative coalitions of distributed producers in order to identify promising Virtual Power Producers in an electricity market.
Resumo:
This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Producers (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper detail some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study.
Resumo:
Adequate decision support tools are required by electricity market players operating in a liberalized environment, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services (AS) represent a good negotiation opportunity that must be considered by market players. Based on the ancillary services forecasting, market participants can use strategic bidding for day-ahead ancillary services markets. For this reason, ancillary services market simulation is being included in MASCEM, a multi-agent based electricity market simulator that can be used by market players to test and enhance their bidding strategies. The paper presents the methodology used to undertake ancillary services forecasting, based on an Artificial Neural Network (ANN) approach. ANNs are used to day-ahead prediction of non-spinning reserve (NS), regulation-up (RU), and regulation down (RD). Spinning reserve (SR) is mentioned as past work for comparative analysis. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.
Resumo:
This paper presents a negotiation mechanism for Dynamic Scheduling based on Swarm Intelligence (SI). Under the new negotiation mechanism, agents must compete to obtain a global schedule. SI is the general term for several computational techniques which use ideas and get inspiration from the social behaviors of insects and other animals. This work is concerned with negotiation, the process through which multiple selfinterested agents can reach agreement over the exchange of operations on competitive resources.
Resumo:
This paper describes a Multi-agent Scheduling System that assumes the existence of several Machines Agents (which are decision-making entities) distributed inside the Manufacturing System that interact and cooperate with other agents in order to obtain optimal or near-optimal global performances. Agents have to manage their internal behaviors and their relationships with other agents via cooperative negotiation in accordance with business policies defined by the user manager. Some Multi Agent Systems (MAS) organizational aspects are considered. An original Cooperation Mechanism for a Team-work based Architecture is proposed to address dynamic scheduling using Meta-Heuristics.
Resumo:
Group decision making plays an important role in organizations, especially in the present-day economy that demands high-quality, yet quick decisions. Group decision-support systems (GDSSs) are interactive computer-based environments that support concerted, coordinated team efforts toward the completion of joint tasks. The need for collaborative work in organizations has led to the development of a set of general collaborative computer-supported technologies and specific GDSSs that support distributed groups (in time and space) in various domains. However, each person is unique and has different reactions to various arguments. Many times a disagreement arises because of the way we began arguing, not because of the content itself. Nevertheless, emotion, mood, and personality factors have not yet been addressed in GDSSs, despite how strongly they influence results. Our group’s previous work considered the roles that emotion and mood play in decision making. In this article, we reformulate these factors and include personality as well. Thus, this work incorporates personality, emotion, and mood in the negotiation process of an argumentbased group decision-making process. Our main goal in this work is to improve the negotiation process through argumentation using the affective characteristics of the involved participants. Each participant agent represents a group decision member. This representation lets us simulate people with different personalities. The discussion process between group members (agents) is made through the exchange of persuasive arguments. Although our multiagent architecture model4 includes two types of agents—the facilitator and the participant— this article focuses on the emotional, personality, and argumentation components of the participant agent.
Resumo:
In almost all industrialized countries, the energy sector has suffered a severe restructuring that originated a greater complexity in market players’ interactions. The complexity that these changes brought made way for the creation of decision support tools that facilitate the study and understanding of these markets. MASCEM – “Multiagent Simulator for Competitive Electricity Markets” arose in this context providing a framework for evaluating new rules, new behaviour, and new participants in deregulated electricity markets. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. ALBidS is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This tool’s goal is to force the thinker to move outside his habitual thinking style. It was developed to be used mainly at meetings in order to “run better meetings, make faster decisions”. This dissertation presents a study about the applicability of the Six Thinking Hats technique in Decision Support Systems, particularly with the multiagent paradigm like the MASCEM simulator. As such this work’s proposal is of a new agent, a meta-learner based on STH technique that organizes several different ALBidS’ strategies and combines the distinct answers into a single one that, expectedly, out-performs any of them.
Resumo:
This paper describes a multi-agent brokerage platform for near real time advertising personalisation organised in three layers: user interface, agency and marketplace. The personalisation is based on the classification of viewer profiles and advertisements (ads). The goal is to provide viewers with a personalised advertising alignment during programme intervals. The enterprise interface agents upload new ads and negotiation profiles to producer agents and new user and negotiation profiles to distributor agents. The agency layer is composed of agents that represent ad producer and media distributor enterprises as well as the market regulator. The enterprise agents offer data upload and download operations as Web Services and register the specification of these interfaces at an UDDI registry for future discovery. The market agent supports the registration and deregistration of enterprise delegate agents at the marketplace. This paper addresses the marketplace layer, an agent-based negotiation platform per se, where delegates of the relevant advertising agencies and programme distributors negotiate to create the advertising alignment that best fits a viewer profile and the advertising campaigns available. The whole brokerage platform is being developed in JADE, a multi-agent development platform. The delegate agents download the negotiation profile and upload the negotiation results from / to the corresponding enterprise agent. In the meanwhile, they negotiate using the Iterated Contract Net protocol. All tools and technologies used are open source.