1000 resultados para Age, 14C
Resumo:
The widespread occurrence of microbialites in the last deglacial reef frameworks (16-6 Ka BP) implies that the accurate study of their development patterns is of prime importance to unravel the evolution of reef architecture through time and to reconstruct the reef response to sea-level variations and environmental changes. The present study is based on the sedimentological and chronological analysis (14C AMS dating) of drill cores obtained during the IODP Expedition #310 "Tahiti Sea Level" on the successive terraces which typify the modern reef slopes from Tahiti. It provides a comprehensive data base to investigate the microbialite growth patterns (i.e. growth rates and habitats), to analyze their roles in reef frameworks and to reconstruct the evolution of the reef framework architecture during sea-level rise. The last deglacial reefs from Tahiti are composed of two distinctive biological communities: (1) the coralgal communities including seven assemblages characterized by various growth forms (branching, robust branching, massive, tabular and encrusting) that form the initial frameworks and (2) the microbial communities developed in the primary cavities of those frameworks, a few meters (1.5 to 6 m) below the living coral reef surface, where they heavily encrusted the coralgal assemblages to form microbialite crusts. The dating results demonstrate the occurrence of two distinctive generations of microbialites: the "reefal microbialites" which developed a few hundred years after coralgal communities in shallow-water environments, whereas the "slope microbialites" grew a few thousands of years later in significantly deeper water conditions after the demise of coralgal communities. The development of microbialites was controlled by the volume and the shape of the primary cavities of the initial reef frameworks determined by the morphology and the packing of coral colonies. The most widespread microbialite development occurred in frameworks dominated by branching, thin encrusting, tabular and robust branching coral colonies which built loose and open frameworks typified by a high porosity (> 50%). In contrast, their growth was minimal in compact coral frameworks formed by massive and thick encrusting corals where primary cavities yielded a low porosity (~ 30%) and could not host a significant microbialite expansion.
Resumo:
Radiocarbon-dated pollen, rhizopod, chironomid and total organic carbon (TOC) records from Nikolay Lake (73°20'N, 124°12'E) and a pollen record from a nearby peat sequence are used for a detailed environmental reconstruction of the Holocene in the Lena Delta area. Shrubby Alnus fruticosa and Betula exilis tundra existed during 10,300-4800 cal. yr BP and gradually disappeared after that time. Climate reconstructions based on the pollen and chironomid records suggest that the climate during ca. 10,300-9200 cal. yr BP was up to 2-3 °C warmer than the present day. Pollen-based reconstructions show that the climate was relatively warm during 9200-6000 cal. yr BP and rather unstable between ca. 5800-3700 cal. yr BP. Both the qualitative interpretation of pollen data and the results of quantitative reconstruction indicate that climate and vegetation became similar to modern-day conditions after ca. 3600 cal. yr BP. The chironomid-based temperature reconstruction suggests a relatively warm period between ca. 2300 and 1400 cal. yr BP, which corresponds to the slightly warmer climate conditions reconstructed from the pollen. Modern chironomid and rhizopod assemblages were established after ca. 1400 cal. yr BP.
Resumo:
A wide variety of environmental records is necessary for analysing and understanding the complex Late Quaternary dynamics of permafrost-dominated Arctic landscapes. A NE Siberian periglacial key region was studied in detail using sediment records, remote sensing data, and terrain modelling, all incorporated in a geographical information system (GIS). The study area consists of the Bykovsky Peninsula and the adjacent Khorogor Valley in the Kharaulakh Ridge situated a few kilometres southeast of the Lena Delta. In this study a comprehensive cryolithological database containing information from 176 sites was compiled. The information from these sites is based on the review of previously published borehole data, outcrop profiles, surface samples, and our own field data. These archives cover depositional records of three periods: from Pliocene to Early Pleistocene, the Late Pleistocene and the Holocene. The main sediment sequences on the Bykovsky Peninsula consist of up to 50 m thick ice-rich permafrost deposits (Ice Complex) that were accumulated during the Late Pleistocene. They were formed as a result of nival processes around extensive snowfields in the Kharaulakh Ridge, slope processes in these mountains (such as in the Khorogor Valley), and alluvial/proluvial sedimentation in a flat accumulation plain dominated by polygonal tundra in the mountain foreland (Bykovsky Peninsula). During the early to middle Holocene warming, a general landscape transformation occurred from an extensive Late Pleistocene accumulation plain to a strongly thermokarst-dominated relief dissected by numerous depressions. Thermokarst subsidence had an enormous influence on the periglacial hydrological patterns, the sediment deposition, and on the composition and distribution of habitats. Climate deterioration, lake drainage, and talik refreezing occurred during the middle to late Holocene. The investigated region was reached by the post-glacial sea level rise during the middle Holocene, triggering thermo-abrasion of ice-rich coasts and the marine inundation of thermokarst depressions.
Resumo:
Polycystine radiolarians are used to reconstruct summer sea surface temperatures (SSSTs) for the Late Pleistocene-Holocene (600-13,400 14C years BP) in the Norwegian Sea. At 13,200 14C years BP, the SSST was close to the average Holocene SSST (~12°C). It then gradually dropped to 7.1°C in the Younger Dryas. Near the Younger Dryas-Holocene transition (~10,000 14C years BP), the SSST increased 5°C in about 530 years. Four abrupt cooling events, with temperature drops of up to 2.1°C, are recognized during the Holocene: at 9340, 7100 ("8200 calendar years event"), 6400 and 1650 14C years BP. Radiolarian SSSTs and the isotopic signal from the GISP2 ice core are strongly coupled, stressing the importance of the Norwegian Sea as a mediator of heat/precipitation exchange between the North Atlantic, the atmosphere, and the Greenland ice sheet. Radiolarian and diatom-derived SSSTs display similarities, with the former not showing the recently reported Holocene cooling trend.
Resumo:
A multiproxy study of palaeoceanographic and climatic changes in northernmost Baffin Bay shows that major environmental changes have occurred since the deglaciation of the area at about 12 500 cal. yr BP. The interpretation is based on sedimentology, benthic and planktonic foraminifera and their isotopic composition, as well as diatom assemblages in the sedimentary records at two core sites, one located in the deeper central part of northernmost Baffin Bay and one in a separate trough closer to the Greenland coast. A revised chronology for the two records is established on the basis of 15 previously published AMS 14C age determinations. A basal diamicton is overlain by laminated, fossil-free sediments. Our data from the early part of the fossiliferous record (12 300 - 11 300 cal. yr BP), which is also initially laminated, indicate extensive seasonal sea-ice cover and brine release. There is indication of a cooling event between 11 300 and 10 900 cal. yr BP, and maximum Atlantic Water influence occurred between 10 900 and 8200 cal. yr BP (no sediment recovery between 8200 and 7300 cal. yr BP). A gradual, but fluctuating, increase in sea-ice cover is seen after 7300 cal. yr BP. Sea-ice diatoms were particularly abundant in the central part of northernmost Baffin Bay, presumably due to the inflow of Polar waters from the Arctic Ocean, and less sea ice occurred at the near-coastal site, which was under continuous influence of the West Greenland Current. Our data from the deep, central part show a fluctuating degree of upwelling after c. 7300 cal. yr BP, culminating between 4000 and 3050 cal. yr BP. There was a gradual increase in the influence of cold bottom waters from the Arctic Ocean after about 3050 cal. yr BP, when agglutinated foraminifera became abundant. A superimposed short-term change in the sea-surface proxies is correlated with the Little Ice Age cooling.
Resumo:
Depositional environments, stratigraphic relations, and 35 new AMS 14C dates at Cape Shpindler, Yugorski Peninsula, help constrain the late Pleistocene glacial and environmental history of the southern Kara Sea region. Fifteen- to fifty-meter-high coastal exposures reveal a complex package of shallow marine, fluvial, glacial, and postglacial deposits, and are documented here in a 19-km-long cross-section and eight vertical sections. The shallow marine (Unit A), estuarine or prodeltaic (Unit B), and fluvio-deltaic (Unit C) deposits contain an interglacial molluscan fauna, yield radiocarbon dates greater than 40 ka, and may correspond with a regional sea-level highstand during the Eemian. These units are overlain by a diamicton (Unit D), and are pervasively deformed by folds and low- to high-angle faults into a stacked glaciotectonic accretionary complex. The diamicton (Unit D) is a subglacial till, and associated massive ground ice with deformed debris bands (Unit E) appears to be relict glacier ice. Glaciotectonic structures document both southward- and northward-directed glacier movement. Above the till and associated glaciotectonic horizons lies 0- to 11-m-thick postglacial deposits of peatland, eolian, fluvial, and primarily lacustrine origin (Unit F). The postglacial deposits yield radiocarbon ages of 12.8 to 0.8 ka. Thus, at least one regional glaciation is prominently represented in the stratigraphy, and occurred probably after the Eemian but before 12.8 ka. We infer that the bulk of the glacial record corresponds with southward advance by an early Weichselian Kara Sea Ice Sheet, in agreement with other recently documented, regional records from Yamal Peninsula and the Pechora Basin. The timing and source of northward-directed glacier ice are less well constrained. Across the broad expanse of the Eurasian Arctic, Quaternary stratigraphy is still sparsely documented. The new data from Cape Shpindler fill a spatial gap in paleoenvironmental research.
Resumo:
The Late Weichselian glacial history of the continental shelf off western Spitsbergen is discussed, based on acoustic sub-bottom records and sediment cores. The outer part of Isfjorden and the inner shelf to the west of this fjord are characterized by a thin veneer (10-20 m) of glacigenic sediments and absence of ice-marginal features. Towards the outer shelf the sediment thickness increases significantly, and exceeds 500 m at the shelf edge. Possible moraine complexes were identified in this outer part. Sediment cores from the inner shelf sampled a firm diamicton, interpreted as till, beneath soft glaciomarine sediments. Radiocarbon dates on shells from the clay resting directly on the till, suggest an age of around 12,500 yrs B.P. for the base of the marine sequence. We argue that grounded ice covered the sites shortly before. In contrast to suggestions that the fjords and coast were partly ice free during the Late Weischselian, we conclude that the ice must have reached out onto the continental shelf.
Resumo:
Surface and deepwater paleoclimate records in Irminger Sea core SO82-5 (59°N, 31°W) and Icelandic Sea core PS2644 (68°N, 22°W) exhibit large fluctuations in thermohaline circulation (THC) from 60 to 18 calendar kyr B.P., with a dominant periodicity of 1460 years from 46 to 22 calendar kyr B.P., matching the Dansgaard-Oeschger (D-O) cycles in the Greenland Ice Sheet Project 2 (GISP2) temperature record [Grootes and Stuiver, 1997, doi:10.1029/97JC00880]. During interstadials, summer sea surface temperatures (SSTsu) in the Irminger Sea averaged to 8°C, and sea surface salinities (SSS) averaged to ~36.5, recording a strong Irminger Current and Atlantic THC. During stadials, SSTsu dropped to 2°-4°C, in phase with SSS drops by ~1-2. They reveal major meltwater injections along with the East Greenland Current, which turned off the North Atlantic deepwater convection and hence the heat advection to the north, in harmony with various ocean circulation and ice models. On the basis of the IRD composition, icebergs came from Iceland, east Greenland, and perhaps Svalbard and other northern ice sheets. However, the southward drifting icebergs were initially jammed in the Denmark Strait, reaching the Irminger Sea only with a lag of 155-195 years. We also conclude that the abrupt stadial terminations, the D-O warming events, were tied to iceberg melt via abundant seasonal sea ice and brine water formation in the meltwater-covered northwestern North Atlantic. In the 1/1460-year frequency band, benthic ?18O brine water spikes led the temperature maxima above Greenland and in the Irminger Sea by as little as 95 years. Thus abundant brine formation, which was induced by seasonal freezing of large parts of the northwestern Atlantic, may have finally entrained a current of warm surface water from the subtropics and thereby triggered the sudden reactivation of the THC. In summary, the internal dynamics of the east Greenland ice sheet may have formed the ultimate pacemaker of D-O cycles.
Resumo:
The palaeoclimatic conditions during the Last Glacial Maximum (LGM) of southern South America and especially latitudinal shifts of the southern westerly wind belt are still discussed controversially. Longer palaeoclimatic records covering the Late Quaternary are rare. A particularly sensitive area to Late Quaternary climatic changes is the Norte Chico, northern Chile, because of its extreme climatic gradients. Small shifts of the present climatic zonation could cause significant variations of the terrestrial sedimentary environment which would be recorded in marine terrigenous sediments. To unveil the history of shifting climatic zones in northern Chile, we present a sedimentological study of a marine sediment core (GeoB 3375-1) from the continental slope off the Norte Chico (27.5°S). Sedimentological investigations include bulk- and silt grain-size determinations by sieving, Atterberg separation, and detailed SediGraph analyses. Additionally, clay mineralogical parameters were obtained by X-ray diffraction methods. The 14C-dated core, covering the time span from approximately 10,000 to 120,000 cal. yr B.P., consists of hemipelagic sediments. Terrigenous sedimentological parameters reveal a strong cyclicity, which is interpreted in terms of variations of sediment provenance, modifications of the terrestrial weathering regimes, and modes of sediment input to the ocean. These interpretations imply cyclic variations between comparatively arid climates and more humid conditions with seasonal precipitation for northern Chile (27.5°S) through the Late Quaternary. The cyclicity of the terrigenous sediment parameters is strongly dominated by precessional cycles. For the palaeoclimatic signal, this means that more humid conditions coincide with maxima of the precession index, as e.g. during the LGM. Higher seasonal precipitation for this part of Chile is most likely derived from frontal winter rain of the Southern Westerlies. Thus, the data presented here favour not only an equatorward shift of this atmospheric circulation system during the LGM, but also precession-controlled latitudinal movements throughout the Late Quaternary. Precessional forcing of latitudinal movements of the westerly atmospheric circulation system may be conceivable through teleconnections to the Northern Hemisphere monsoonal system in the Atlantic Ocean region.