989 resultados para Affinity Ngf Receptor


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aggregation of the high-affinity IgE receptor (FcεRI) with the low-affinity IgG receptor (FcγRIIb) on basophils or mast cells has been shown to inhibit allergen-induced cell degranulation. Molecules cross-linking these two receptors might therefore be of interest for the treatment of allergic disorders. Here, we demonstrate the generation of a novel bispecific fusion protein efficiently aggregating FcεRI-bound IgE with FcγRIIb on the surface of basophils to prevent pro-inflammatory mediator release.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The regulation of cell death is a key element in building up and maintaining both innate and adaptive immunity. A critical role in this process plays the tumor necrosis factor (TNF)/nerve growth factor (NGF) receptor family of death receptors. Recent work suggests that sialic acid binding immunoglobulin (Ig) -like lectins (Siglecs) are also empowered to transmit death signals, at least into myeloid cells. Strikingly, death induction by Siglecs is enhanced when cells are exposed to proinflammatory survival cytokines. Based on these recent insights, we hypothesize that at least some members of the Siglec family regulate immune responses via the activation of caspase-dependent and caspase-independent cell death pathways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

IgG autoantibodies against the alpha-chain of the high affinity IgE receptor are claimed to play a pathogenetic role in autoimmune urticaria. The best methods for detection of functional autoantibodies are currently the autologous serum skin test and the basophil histamine release assay. A simplified and feasible screening test would facilitate the diagnosis of autoimmune urticaria. Here we offer an explanation for the difficulties in establishing a screening test for autoantibodies directed against the alpha-chain of the high affinity IgE receptor in autoimmune urticaria. Identical autoantibodies in chronic urticaria patients and healthy donors belonging to the natural autoantibody repertoire were found by sequence analysis of anti-alpha-chain autoantibodies isolated by repertoire cloning from antibody libraries. These natural autoantibodies bound to the receptor and triggered histamine release but only if IgE was previously removed from the receptor. Diagnostic assays used for detection of antibodies directed against the IgE receptor may require signal comparison with and without the artificial removal of IgE, immune complexes, and complement in order to avoid false positive or negative results. After IgE removal diagnostic tests will detect natural autoantibodies against the high affinity IgE receptor regardless of whether they are pathogenic or not.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent studies indicated that hyperactivity of the hypothalamo-pituitary-adrenal system is a considerable risk factor for the precipitation of affective disorders, most notably of major depression. The mechanism by which this hyperactivity eventually leads to clinical symptoms of depression is unknown. In the present animal study, we tested one possible mechanism, i.e., that long-term exposure to high corticosterone levels alters functional responses to serotonin in the hippocampus, an important area in the etiology of depression. Rats were injected daily for 3 weeks with a high dose of corticosterone; electrophysiological responses to serotonin were recorded intracellularly from CA1 pyramidal neurons in vitro. We observed that daily injections with corticosterone gradually attenuate the membrane hyperpolarization and resistance decrease mediated by serotonin-1A receptors. We next used single-cell antisense RNA amplification from identified CA1 pyramidal neurons to resolve whether the functional deficits in serotonin responsiveness are accompanied by decreased expression levels of the serotonin-1A receptor. It appeared that expression of serotonin-1A receptors in CA1 pyramidal cells is not altered; this result was supported by in situ hybridization. Expression of corticosteroid receptors in the same cells, particularly of the high-affinity mineralocorticoid receptor, was significantly reduced after long-term corticosterone treatment. The present findings indicate that prolonged elevation of the corticosteroid concentration, a possible causal factor for major depression in humans, gradually attenuates responsiveness to serotonin without necessarily decreasing serotonin-1A receptor mRNA levels in pyramidal neurons. These functional changes may occur by a posttranscriptional mechanism or by transcriptional regulation of genes other than the serotonin-1A receptor gene itself.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In RBL-2H3 tumor mast cells, cross-linking the high affinity IgE receptor (FcεRI) with antigen activates cytosolic tyrosine kinases and stimulates Ins(1,4,5)P3 production. Using immune complex phospholipase assays, we show that FcεRI cross-linking activates both PLCγ1 and PLCγ2. Activation is accompanied by the increased phosphorylation of both PLCγ isoforms on serine and tyrosine in antigen-treated cells. We also show that the two PLCγ isoforms have distinct subcellular localizations. PLCγ1 is primarily cytosolic in resting RBL-2H3 cells, with low levels of plasma membrane association. After antigen stimulation, PLCγ1 translocates to the plasma membrane where it associates preferentially with membrane ruffles. In contrast, PLCγ2 is concentrated in a perinuclear region near the Golgi and adjacent to the plasma membrane in resting cells and does not redistribute appreciably after FcεRI cross-linking. The activation of PLCγ1, but not of PLCγ2, is blocked by wortmannin, a PI 3-kinase inhibitor previously shown to block antigen-stimulated ruffling and to inhibit Ins(1,4,5)P3 synthesis. In addition, wortmannin strongly inhibits the antigen-stimulated phosphorylation of both serine and tyrosine residues on PLCγ1 with little inhibition of PLCγ2 phosphorylation. Wortmannin also blocks the antigen-stimulated translocation of PLCγ1 to the plasma membrane. Our results implicate PI 3-kinase in the phosphorylation, translocation, and activation of PLCγ1. Although less abundant than PLCγ2, activated PLCγ1 may be responsible for the bulk of antigen-stimulated Ins(1,4,5)P3 production in RBL-2H3 cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bruton’s tyrosine kinase (Btk) plays pivotal roles in mast cell activation as well as in B cell development. Btk mutations lead to severe impairments in proinflammatory cytokine production induced by cross-linking of high-affinity IgE receptor on mast cells. By using an in vitro assay to measure the activity that blocks the interaction between protein kinase C and the pleckstrin homology domain of Btk, terreic acid (TA) was identified and characterized in this study. This quinone epoxide specifically inhibited the enzymatic activity of Btk in mast cells and cell-free assays. TA faithfully recapitulated the phenotypic defects of btk mutant mast cells in high-affinity IgE receptor-stimulated wild-type mast cells without affecting the enzymatic activities and expressions of many other signaling molecules, including those of protein kinase C. Therefore, this study confirmed the important roles of Btk in mast cell functions and showed the usefulness of TA in probing into the functions of Btk in mast cells and other immune cell systems. Another insight obtained from this study is that the screening method used to identify TA is a useful approach to finding more efficacious Btk inhibitors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mast cells (MC) are stem cell factor-dependent tissue-based hematopoietic cells with substantial functional heterogeneity. Cord blood-derived human MC (hMC) express functional receptors for IL-5, and IL-5 mediates stem cell factor-dependent comitogenesis of hMC in vitro. Although IL-5 is not required for normal hMC development, we considered that it might prime hMC for their high-affinity Fc receptor for IgE (FcɛRI)-dependent generation of cytokines, as previously demonstrated for IL-4. Compared with hMC maintained in stem cell factor alone, hMC primed with IL-5 expressed 2- to 4-fold higher steady-state levels of TNF-α, IL-5, IL-13, macrophage inflammatory protein 1α, and granulocyte-macrophage colony-stimulating factor transcripts 2 h after FcɛRI crosslinking and secreted 2- to 5-fold greater quantities of the corresponding cytokines, except IL-13, at 6 h. Unlike IL-4, IL-5 priming did not enhance FcɛRI-dependent histamine release. Thus, IL-5 augments cytokine production by hMC by a mechanism distinct from that of IL-4 and with a different resultant profile of cytokine production. These observations suggest a potentially autocrine effect of IL-5 on hMC for amplification of allergic immune responses, in addition to its recognized paracrine effects on eosinophils, and implicate both IL-4 and IL-5 in the modulation of the hMC phenotype.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cross-linking of the high-affinity IgE receptor (FcɛRI) on mast cells with IgE and multivalent antigen triggers mitogen-activated protein (MAP) kinase activation and cytokine gene expression. We report here that MAP kinase kinase 4 (MKK4) gene disruption does not affect either MAP kinase activation or cytokine gene expression in response to cross-linking of FcɛRI in embryonic stem cell-derived mast cells. MKK7 is activated in response to cross-linking of FcɛRI, and this activation is inhibited by MAP/ERK kinase (MEK) kinase 2 (MEKK2) gene disruption. In addition, expression of kinase-inactive MKK7 in the murine mast cell line MC/9 inhibits c-Jun NH2-terminal kinase (JNK) activation in response to cross-linking of FcɛRI, whereas expression of kinase-inactive MKK4 does not affect JNK activation by this stimulus. However, FcɛRI-induced activation of the tumor necrosis factor-α (TNF-α) gene promoter is not affected by expression of kinase-inactive MKK7. We describe an alternative pathway by which MEKK2 activates MEK5 and big MAP kinase1/extracellular signal-regulated kinase 5 in addition to MKK7 and JNK, and interruption of this pathway inhibits TNF-α promoter activation. These findings suggest that JNK activation by antigen cross-linking is dependent on the MEKK2-MKK7 pathway, and cytokine production in mast cells is regulated in part by the signaling complex MEKK2-MEK5-ERK5.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PCR was used to isolate nucleotide sequences that may encode novel members of the neuropeptide Y receptor family. By use of a PCR product as a hybridization probe, a full-length human cDNA was isolated that encodes a 375-aa protein with a predicted membrane topology identifying it as a member of the G-protein-coupled receptor superfamily. After stable transfection of the cDNA into human embryonic kidney 293 cells, the receptor exhibited high affinity (Kd = 2.8 nM) for 125I-labeled human pancreatic polypeptide (PP). Competition binding studies in whole cells indicated the following rank order of potency: human PP = bovine PP > or = human [Pro34]peptide YY > rat PP > human peptide YY = human neuropeptide Y. Northern blot analysis revealed that human PP receptor mRNA is most abundantly expressed in skeletal muscle and, to a lesser extent, in lung and brain tissue. A rat cDNA clone encoding a high-affinity PP receptor that is 74% identical to the human PP receptor at the amino acid level was also isolated. These receptor clones will be useful in elucidating the functional role of PP and designing selective PP receptor agonists and antagonists.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An adipocyte membrane glycoprotein, (FAT), homologous to human CD36, has been previously implicated in the binding/transport of long-chain fatty acids. It bound reactive derivatives of long-chain fatty acids and binding was specific and associated with significant inhibition of fatty acid uptake. Tissue distribution of the protein and regulation of its expression were also consistent with its postulated role. In this report, we have examined the effects of FAT expression on rates and properties of fatty acid uptake by Ob17PY fibroblasts lacking the protein. Three clones (P21, P22, and P25) were selected based on FAT mRNA and protein levels. Cell surface labeling could be demonstrated with the anti-CD36 antibody FITC-OKM5. In line with this, the major fraction of immunoreactive FAT was associated with the plasma membrane fraction. Assays of oleate and/or palmitate uptake demonstrated higher rates in the three FAT-expressing clones, compared to cells transfected with the empty vector. Clone P21, which had the highest protein levels on Western blots, exhibited the largest increase in transport rates. Fatty acid uptake in FAT-expressing P21 cells reflected two components, a phloretin-sensitive high-affinity saturable component with a Km of 0.004 microM and a basal phloretin-insensitive component that was a linear function of unbound fatty acid. P21 cells incorporated more exogenous fatty acid into phospholipids, indicating that binding of fatty acids was followed by their transfer into the cell and that both processes were increased by FAT expression. The data support the interpretation that FAT/CD36 functions as a high-affinity membrane receptor/transporter for long-chain fatty acids.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human granulocyte-macrophage colony-stimulating factor (GM-CSF) binds to a high-affinity heterodimeric receptor composed of a specific alpha chain and a common beta chain (beta(c)), which is shared with the receptors for interleukins 3 and 5. Hemopoietic cell survival requires GM-CSF binding this high-affinity receptor. We have recently developed the GM-CSF mutant E21R, which selectively binds to the alpha chain and behaves as a competitive GM-CSF antagonist. We have now examined the role of E21R on the survival of hemopoietic cells and found that E21R causes apoptosis (programmed cell death) of normal and malignant cells directly in the absence of GM-CSF. The direct apoptotic effect of E21R occurred in a dose- and time-dependent manner. Apoptosis by E21R was dependent on cells expressing the high-affinity GM-CSF receptor and could be blocked by GM-CSF. Significantly, apoptosis of the cells occurred even in the presence of the survival factors granulocyte CSF and stem cell factor but was prevented by engagement of beta(c) with interleukin 3. The initiation of apoptosis required phosphorylation, transcriptional activity, and protein synthesis. These findings support a model whereby binding of E21R to the alpha chain leads to apoptosis, while beta(c) plays an important role in cell survival. This model may be applicable to other multimeric cytokine receptors and offers a novel approach for the treatment of human leukemia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Detergent-resistant plasma membrane structures, such as caveolae, have been implicated in signalling, transport, and vesicle trafficking functions. Using sucrose gradient ultracentrifugation, we have isolated low-density, Triton X-100-insoluble membrane domains from RBL-2H3 mucosal mast cells that contain several markers common to caveolae, including a src-family tyrosine kinase, p53/56lyn. Aggregation of Fc epsilon RI, the high-affinity IgE receptor, causes a significant increase in the amount of p53/56lyn associated with these low-density membrane domains. Under our standard conditions for lysis, IgE-Fc epsilon RI fractionates with the majority of the solubilized proteins, whereas aggregated receptor complexes are found at a higher density in the gradient. Stimulated translocation of p53/56lyn is accompanied by increased tyrosine phosphorylation of several proteins in the low-density membrane domains as well as enhanced in vitro tyrosine kinase activity toward these proteins and an exogenous substrate. With a lower detergent-to-cell ratio during lysis, significant Fc epsilon RI remains associated with these membrane domains, consistent with the ability to coimmunoprecipitate tyrosine kinase activity with Fc epsilon RI under similar lysis conditions [Pribluda, V. S., Pribluda, C. & Metzger, H. (1994) Proc. Natl. Acad. Sci. USA 91, 11246-11250]. These results indicate that specialized membrane domains may be directly involved in the coupling of receptor aggregation to the activation of signaling events.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evidence for the presence of the vitamin D receptor in brain implies this vitamin may have some function in this organ. This study investigates whether vitamin D-3 acts during brain development. We demonstrate that rats born to vitamin D-3-deficient mothers had profound alterations in the brain at birth. The cortex was longer but not wider, the lateral ventricles were enlarged, the cortex was proportionally thinner and there was more cell proliferation throughout the brain. There were reductions in brain content of nerve growth factor and glial cell line-derived neurotrophic factor and reduced expression of p75(NTR), the low-affinity neurotrophin receptor. Our findings would suggest that low maternal vitamin D3 has important ramifications for the developing brain. (C) 2003 IBRO. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Much is known about how genes regulated by nuclear receptors (NRs) are switched on in the presence of a ligand. However, the molecular mechanism for gene down-regulation by liganded NRs remains a conundrum. The interaction between two zinc-finger transcription factors, Nuclear Receptor and GATA, was described almost a decade ago as a strategy adopted by the cell to up-or down-regulate gene expression. More recently, cell-based assays have shown that the Zn-finger region of GATA2 (GATA2-Zf) has an important role in down-regulation of the thyrotropin gene (TSH beta) by liganded thyroid hormone receptor (TR). Methodology/Principal Findings: In an effort to better understand the mechanism that drives TSH beta down-regulation by a liganded TR and GATA2, we have carried out equilibrium binding assays using fluorescence anisotropy to study the interaction of recombinant TR and GATA2-Zf with regulatory elements present in the TSH beta promoter. Surprisingly, we observed that ligand (T3) weakens TR binding to a negative regulatory element (NRE) present in the TSH beta promoter. We also show that TR may interact with GATA2-Zf in the absence of ligand, but T3 is crucial for increasing the affinity of this complex for different GATA response elements (GATA-REs). Importantly, these results indicate that TR complex formation enhances DNA binding of the TR-GATA2 in a ligand-dependent manner. Conclusions: Our findings extend previous results obtained in vivo, further improving our understanding of how liganded nuclear receptors down-regulate gene transcription, with the cooperative binding of transcription factors to DNA forming the core of this process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação apresentada para a obtenção do Grau de Mestre em Biotecnologia, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia