968 resultados para Adhesins, Bacterial -- immunology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Staphylococcus aureus is a leading cause of lower respiratory tract infections in both adult and pediatric populations. In the past two decades, reports have described emergent incidence of severe necrotizing pneumonia in previously healthy individuals, frequently caused by antibiotic resistant strains. Additionally, S. aureus remains the most common cause of ventilator-associated pneumonia, contributing morbidity and mortality in intensive care units. As treatment of infection is made more difficult by the resistance to multiple antibiotics including vancomycin, there is a pressing need for novel strategies to prevent and treat S. aureus infections. Targeting essential mechanisms that promote infection such as adhesion, colonization, invasion, evasion of immune system and signaling may lead to inhibition of pathogenic surge. Staphylococcal adhesins of the MSCRAMM family (microbial surface components recognizing adherent matrix molecules) represent viable targets for such investigations. Understanding the molecular mechanism of binding is the first step toward the development of such therapies. Analysis of bacterial strains isolated from patients with staphylococcal pneumonia show increased expression of protein A, SdrD, SdrC and ClfB, cell surface proteins members of the MSCRAMM family. In this study the interaction of these MSCRAMMs with candidate ligands has been examined. We found that SdrD mediates S. aureus adherence to the lung epithelial cell line A549. Consistently, bacteria expressing SdrD have increased persistence in the lungs of infected mice after bronchoalveolar lavage in comparison with bacteria lacking this protein. Inhibition studies revealed that bacterial attachment can be abolished using neutralizing antibodies against SdrD. Using phage display, neurexin β isoforms were identified as SdrC binding partners. Previous reports postulated that MSCRAMMS bind their ligands by a 'dock, lock and latch' mechanism of interaction. Our data suggested that ClfB, an MSCRAMM responsible for nasal colonization, binds cytokeratin 10 by a 'dock and lock' variant of this model, in which the 'latching' event is not necessary. In summary, we have characterized aspects of molecular interaction between several MSCRAMMS and host components. We hope that continued delineation of these interactions will lead to identification of novel therapeutic targets or preventive strategies against S. aureus infections. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial DNA activates mouse macrophages, B cells, and dendritic cells in a TLR9-dependent manner. Although short ssCpG-containing phosphodiester oligonucleotides (PO-ODN) can mimic the action of bacterial DNA on macrophages, they are much less immunostimulatory than Escherichia coli DNA. In this study we have assessed the structural differences between E. coli DNA and PO-ODN, which may explain the high activity of bacterial DNA on macrophages. DNA length was found to be the most important variable. Double-strandedness was not responsible for the increased activity of long DNA. DNA adenine methyltransferase (Dam) and DNA cytosine methyltransferase (Dcm) methylation of E. coli DNA did not enhance macrophage NO production. The presence of two CpG motifs on one molecule only marginally improved activity at low concentration, suggesting that ligand-mediated TLR9 cross-linking was not involved. The major contribution was from DNA length. Synthetic ODN > 44 nt attained the same levels of activity as bacterial DNA. The response of macrophages to CpG DNA requires endocytic uptake. The length dependence of the CpG ODN response was found to correlate with the presence in macrophages of a length-dependent uptake process for DNA. This transport system was absent from B cells and fibroblasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capsular polysaccharide and type I fimbriae are two of the major surface-located virulence properties associated with the pathogenesis of Klebsiella pneumoniae. The capsule is an elaborate polysaccharide matrix that encases the entire cell surface and provides resistance against many host defense mechanisms. In contrast, type 1 fimbriae are thin adhesive thread-like surface organelles that can extend beyond the capsular matrix and mediate D-mannose-sensitive adhesion to host epithelial cells. These fimbriae are archetypical and consist of a major building block protein (FimA) that comprises the bulk of the organelle and a tip-located adhesin (FimH). It is assumed that the extended major-subunit protein structure permits the FimH adhesin to function independently of the presence of a capsule. In this study, we have employed a defined set of K. pneumoniae capsulated and noncapsulated strains to show that the function of type I fimbriae is actually impeded by the concomitant expression of a polysaccharide capsule. Capsule expression had significant effects on two parameters commonly used to define FimH function, namely, yeast cell agglutination and biofilm formation. Our data suggest that this effect is not due to transcriptional/translational changes in fimbrial gene/protein expression but rather the result of direct physical interference. This was further demonstrated by the fact that we could restore fimbrial function by inhibiting capsule synthesis. It remains to be determined whether the expression of these very different surface components occurs simply via random events of phase variation or in a coordinated manner in response to specific environmental cues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activated macrophages and osteoclasts express high amounts of tartrate-resistant acid phosphatase (TRACP, acp5). TRACP has a binuclear iron center with a redox-active iron that has been shown to catalyze the formation of reactive oxygen species (ROS) by Fenton's reaction. Previous Studies Suggest that ROS generated by TRACP may participate in degradation of endocytosed bone matrix products in resorbing osteoclasts and degradation of foreign Compounds during. antigen presentation in activated macrophages. Here we have compared free radical production in macrophages of TRACP overexpressing (TRACP +) and wild-type (WT) mice. TRACP overexpression increased both ROS levels and Superoxide production. Nitric oxide production was increased in activated macrophages or WT mice, but not in TRACP+ mice, Macrophages from TRACP+ mice showed increased capacity or bacterial killing. Recombinant TRACP enzyme was capable of bacterial killing in the presence of hydrogen peroxide. These results suggest that TRACP has an important biological function in immune defense systern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copyright © 2015. Published by Elsevier Ltd. Acknowledgments The authors thank Richard Paley, Georgina Rimmer and Tom Hill for their contribution during the brown trout infection challenges carried out in CEFAS-Weymouth biosecurity facilities. Bartolomeo Gorgoglione and Nick G. H. Taylor were supported by a DEFRA contract C3490

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We would like to acknowledge Richard Paley, Tom Hill and Georgina Rimmer for their collaboration during brown trout infection challenges in CEFAS-Weymouth biosecurity facilities. Bartolomeo Gorgoglione, Stephen W. Feist and Nick G. H. Taylor were supported by a DEFRA grant (F1198).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia trachomatis infections have been implicated in problems such as pelvic inflammatory disease and infertility in females. Although there are some studies examining the kinetics of ascending infection, there is limited information on the kinetics of pathology development and cellular infiltrate into the reproductive tissues in relation to the effects of inoculating dose, and a better understanding of these is needed. The murine model of female genital tract Chlamydia muridarum infection is frequently used as a model of human C. trachomatis reproductive tract infection. To investigate the kinetics of ascending genital infection and associated pathology development, female BALB/c mice were intravaginally infected with C. muridarum at doses ranging from 5102 to 2.6106 inclusion forming units. We found that the inoculating dose affects the course of infection and the ascension of bacteria, with the highest dose ascending rapidly to the oviducts. By comparison, the lowest dose resulted in the greatest bacterial load in the lower reproductive tract. Interestingly, we found that the dose did not significantly affect inflammatory cell infiltrate in the various regions. Overall, this data show the effects of infectious dose on the kinetics of ascending chlamydial infection and associated inflammatory infiltration in BALB/c mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prevalence and concentrations of Campylobacter jejuni, Salmonella spp. and enterohaemorrhagic E. coli (EHEC) were investigated in surface waters in Brisbane, Australia using quantitative PCR (qPCR) based methodologies. Water samples were collected from Brisbane City Botanic Gardens (CBG) Pond, and two urban tidal creeks (i.e., Oxley Creek and Blunder Creek). Of the 32 water samples collected, 8 (25%), 1 (3%), 9 (28%), 14 (44%), and 15 (47%) were positive for C. jejuni mapA, Salmonella invA, EHEC O157 LPS, EHEC VT1, and EHEC VT2 genes, respectively. The presence/absence of the potential pathogens did not correlate with either E. coli or enterococci concentrations as determined by binary logistic regression. In conclusion, the high prevalence, and concentrations of potential zoonotic pathogens along with the concentrations of one or more fecal indicators in surface water samples indicate a poor level of microbial quality of surface water, and could represent a significant health risk to users. The results from the current study would provide valuable information to the water quality managers in terms of minimizing the risk from pathogens in surface waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several lines of evidence implicate the p38 mitogen-activated protein kinase (p38 MAPK) in the proinflammatory response to bacterial agents and cytokines. Equally, the transcription factor, nuclear factor (NF)-kappaB, is recognized to be a critical determinant of the inflammatory response in intestinal epithelial cells (IECs). However, the precise inter-relationship between the activation of p38 MAPK and activation of the transcription factor NF-kappaB in the intestinal epithelial cell (IEC) system, remains unknown. Here we show that interleukin (IL)-1beta activates all three MAPKs in Caco-2 cells. The production of IL-8 and monocyte chemotactic protein 1 (MCP-1) was attenuated by 50% when these cells were preincubated with the p38 MAPK inhibitor, SB 203580. Further investigation of the NF-kappaB signalling system revealed that the inhibitory effect was independent of the phosphorylation and degradation of IkappaBalpha, the binding partner of NF-kappaB. This effect was also independent of the DNA binding of the p65 Rel A subunit, as well as transactivation, determined by an NF-kappaB luciferase construct, using both SB 203580 and dominant-negative p38 MAPK. Evaluation of IL-8 and MCP-1 RNA messages by reverse transcription-polymerase chain reaction (RT-PCR) revealed that the inhibitory effect of SB 203580 was associated with a reduction in this parameter. Using an IL-8-luciferase promoter construct, an effect of p38 upon its activation by both pharmacological and dominant-negative p38 construct co-transfection was demonstrated. It is concluded that p38 MAPK influences the expression of chemokines in intestinal epithelial cells, through an effect upon the activation of the chemokine promoter, and does not directly involve the activation of the transcription factor NF-kappaB

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia trachomatis is an obligate intracellular bacterial pathogen that infects the genital and ocular mucosa of humans, causing infections that can lead to pelvic inflammatory disease, infertility, and blinding trachoma. C. pneumoniae is a respiratory pathogen that is the cause of 12–15% of community-acquired pneumonia. Both chlamydial species were believed to be restricted to the epithelia of the genital, ocular, and respiratory mucosa; however, increasing evidence suggests that both these pathogens can be isolated from peripheral blood of both healthy individuals and patients with inflammatory conditions such as coronary artery disease and asthma. Chlamydia can also be isolated from brain tissues of patients with degenerative neurological disorders such as Alzheimer’s disease and multiple sclerosis, and also from certain lymphomas. An increasing number of in vitro studies suggest that some chlamydial species can infect immune cells, at least at low levels. These infections may alter immune cell function in a way that promotes chlamydial persistence in the host and contributes to the progression of several chronic inflammatory diseases. In this paper, we review the evidence for the growth of Chlamydia in immune cells, particularly monocytes/macrophages and dendritic cells, and describe how infection may affect the function of these cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of vaccines to combat pathogens that infect across mucosal surfaces has been a major goal of vaccine research. Successful mucosal vaccination requires the co-administration of adjuvants that can overcome the state of immune tolerance normally associated with mucosal application of proteins. In the case of oral immunization, delivery systems are also required to protect vaccine antigens against destruction by gastric pH and digestive enzymes. Furthermore, adjuvants used for mucosal delivery must be free of neurotoxic effects like those induced by the commonly used experimental mucosal adjuvant cholera toxin. Maintenance of the "cold chain" is also essential for the effectiveness of any vaccine and adjuvants/delivery systems that enhance the stability of a vaccine would offer a significant advantage. Needle-free methods of vaccination that induce protective immunity at multiple mucosal surfaces are also desirable for rapid vaccination of large populations. In the present study we show that transcutaneous immunization (TCI) using Lipid C, a novel lipid-based matrix originally developed for oral immunization, containing soluble Helicobacter sonicate significantly reduces the gastric bacterial burden in mice following gastric challenge with live Helicobacter pylori. Protection is associated with the production of splenic gamma interferon and gastric IgA and was achieved without the co-administration of potent and potentially toxic adjuvants, although protection was further enhanced by inclusion of CpG-ODN and cholera toxin in the lipid delivery system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer.