992 resultados para Adenosine A(2a) receptor


Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is provisional evidence of involvement of adenosine in depression. In this study, the second messenger intracellular calcium response in platelets was measured in patients with major depression and controls using spectrofluorometry. The primary result of this study was a statistically significantly blunted second messenger response to agonist stimulation in the depressed group compared to the control group at the 50 and 100 nM and 1 microM dosage levels. This suggests that dysregulation of the adenosine A2a receptor may be present in depression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the potency and maximal responses (E-max) to the adenosine receptor agonists N-6-cyclopentyladenosine (CPA), N-ethylcarboxamidoadenosine (NECA) and N-6-(3-iodobenzyl)-5'-N-methylcarbaxamidoadenosine (IB-MECA) in right atria from trained rats. We also investigated the interaction between the training bradycardia and the sensitivity of the chronotropic response mediated by adenosine receptor stimulation.2. Animals were submitted to run training for 60 min, 5 days a week, over a period of 8 weeks. Mean blood pressure and heart rate were measured in conscious animals. Right atria were isolated and concentration-response curves to CPA, NECA and IB-MECA were obtained.3. A reduction in heart rate was found in trained rats, indicating that the training programme was successful in inducing physical conditioning. The three adenosine receptor agonists induced a concentration-dependent negative chronotropic response. The rank order of potency and E-max for the three adenosine receptor agonists was CPA>NECA>IB-MECA.4. Dynamic exercise for 8 weeks did not alter the E a, for CPA, NECA and IB-MECA. Similarly, the potencies of CPA and NECA were not affected by run training, whereas the potency of IB-MECA was reduced (6.10+/-0.09 vs 5.66+/-0.10 for sedentary and trained groups, respectively).5. In conclusion, run training for 8 weeks induced a desensitization of the chronotropic response to IB-MECA without changing the potency of CPA and NECA. These findings exclude the participation of adenosine receptors in the training bradycardia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In previous studies, we demonstrated biphasic purinergic effects on prolactin (PRL) secretion stimulated by an adenosine A2 agonist. In the present study, we investigated the role of the activation of adenosine A1 receptors by (R)-N6-(2-phenylisopropyl)adenosine (R-PIA) at the pituitary level in in vitro PRL secretion. Hemipituitaries (one per cuvette in five replicates) from adult male rats were incubated. Administration of R-PIA (0.001, 0.01, 0.1, 1, and 10 µM) induced a reduction of PRL secretion into the medium in a U-shaped dose-response curve. The maximal reduction was obtained with 0.1 µM R-PIA (mean ± SEM, 36.01 ± 5.53 ng/mg tissue weight (t.w.)) treatment compared to control (264.56 ± 15.46 ng/mg t.w.). R-PIA inhibition (0.01 µM = 141.97 ± 15.79 vs control = 244.77 ± 13.79 ng/mg t.w.) of PRL release was blocked by 1 µM cyclopentyltheophylline, a specific A1 receptor antagonist (1 µM = 212.360 ± 26.560 ng/mg t.w.), whereas cyclopentyltheophylline alone (0.01, 0.1, 1 µM) had no effect. R-PIA (0.001, 0.01, 0.1, 1 µM) produced inhibition of PRL secretion stimulated by both phospholipase C (0.5 IU/mL; 977.44 ± 76.17 ng/mg t.w.) and dibutyryl cAMP (1 mM; 415.93 ± 37.66 ng/mg t.w.) with nadir established at the dose of 0.1 µM (225.55 ± 71.42 and 201.9 ± 19.08 ng/mg t.w., respectively). Similarly, R-PIA (0.01 µM) decreased (242.00 ± 24.00 ng/mg t.w.) the PRL secretion stimulated by cholera toxin (0.5 mg/mL; 1050.00 ± 70.00 ng/mg t.w.). In contrast, R-PIA had no effect (468.00 ± 34.00 ng/mg t.w.) on PRL secretion stimulation by pertussis toxin (0.5 mg/mL; 430.00 ± 26.00 ng/mg t.w.). These results suggest that inhibition of PRL secretion after A1 receptor activation by R-PIA is mediated by a Gi protein-dependent mechanism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High overexpression of somatostatin receptors in neuroendocrine tumors allows imaging and radiotherapy with radiolabeled somatostatin analogues. To ascertain whether a tumor is suitable for in vivo somatostatin receptor targeting, its somatostatin receptor expression has to be determined. There are specific indications for use of immunohistochemistry for the somatostatin receptor subtype 2A, but this has up to now been limited by the lack of an adequate reliable antibody. The aim of this study was to correlate immunohistochemistry using the new monoclonal anti-somatostatin receptor subtype 2A antibody UMB-1 with the gold standard in vitro method quantifying somatostatin receptor levels in tumor tissues. A UMB-1 immunohistochemistry protocol was developed, and tumoral UMB-1 staining levels were compared with somatostatin receptor binding site levels quantified with in vitro I-[Tyr]-octreotide autoradiography in 89 tumors. This allowed defining an immunohistochemical staining threshold permitting to distinguish tumors with somatostatin receptor levels high enough for clinical applications from those with low receptor expression. The presence of >10% positive tumor cells correctly predicted high receptor levels in 95% of cases. In contrast, absence of UMB-1 staining truly reflected low or undetectable somatostatin receptor expression in 96% of tumors. If 1% to 10% of tumor cells were stained, a weak staining intensity was suggestive of low somatostatin receptor levels. This study allows for the first time a reliable recommendation for eligibility of an individual patient for in vivo somatostatin receptor targeting based on somatostatin receptor immunohistochemistry. Under optimal methodological conditions, UMB-1 immunohistochemistry may be equivalent to in vitro receptor autoradiography.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adenosine A2A receptors are present on enkephalinergic medium sized striatal neurons in the rat and have an important function in the modulation of striatal output. In order to establish more accurately whether adenosine transmission is a generalized phenomenon in mammalian striatum we compared the A2A R expression in the mouse, rat, cat and human striatum. Secondly we compared the modulation of enkephalin gene expression and A2A receptor gene expression in rat striatal neurons after 6-OH-dopamine lesion of the substantia nigra. Hybridization histochemistry was performed with a 35S-labelled radioactive oligonucleotide probe. The results showed high expression of A2A adenosine receptor genes only in the medium-sized cells of the striatum in all examined species. In the rat striatum, expression of A2A receptors was not significantly altered after lesion of the dopaminergic pathways with 6-OH-dopamine even though enkephalin gene expression was up-regulated. The absence of a change in A2A receptor gene expression after 6-OH-dopamine treatment speaks against a dependency on dopaminergic innervation. The maintained inhibitory function of A2A R on motor activity in spite of dopamine depletion could be partly responsible for the depression of locomotor activity observed in basal ganglia disorders such as Parkinson's disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The adenosine A2a receptors (A2aR) play an important role in the purinergic mediated neuromodulation. The presence of A2aR in the brain is well established. In contrast, little is known about their expression in the periphery. The purpose of this study was to investigate the expression of A2aR gene in the autonomic (otic, sphenopalatine, ciliary, cervical superior ganglia and carotid body) and in the dorsal root ganglia of normal rat. Hybridization histochemistry with S35-labelled radioactive oligonucleotide probes was used. An expression of A2aR gene was found in the large neuronal cells of the rat dorsal root ganglia. The satellite cells showed no expression of A2aR gene. In the superior cervical ganglion, isolated ganglion cells expressed A2aR. In the carotid body clusters of cells with a strong A2aR gene expression were found. In contrast, the ciliary and otic ganglia did not expressed A2aR gene, and only few small sized A2aR expressing cells were demonstrated in the sphenopalatine ganglion. The discrete distribution of A2aR gene expression in the peripheral nervous system speaks for a role of this receptor in the purinergic modulation of sensory information as well as in the sympathetic nervous system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chronic lung diseases and acute lung injuries are two distinctive pulmonary disorders that result in significant morbidity and mortality. Adenosine is a signaling nucleoside generated in response to injury and can serve both protective and destructive functions in tissues and cells through interaction with four G-protein coupled adenosine receptors: A1R, A2AR, A2BR, and A3R. However, the relationship between these factors is poorly understood. Recent findings suggest the A2BR has been implicated in the regulation of both chronic lung disease and acute lung injury. The work presented in this dissertation utilized the adenosine deaminase-deficient mouse model and the bleomycin-induced pulmonary injury model to determine the distinctive roles of the A2BR at different stages of the disease. Results demonstrate that the A2BR plays a protective role in attenuating vascular leakage in acute lung injuries and a detrimental role at chronic stages of the disease. In addition, tissues from patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis were utilized to examine adenosine metabolism and signaling in chronic lung diseases. Results demonstrate that components of adenosine metabolism and signaling are altered in a manner that promotes adenosine production and signaling in the lungs of these patients. Furthermore, this study provides the first evidence that A2BR signaling can promote the production of inflammatory and fibrotic mediators in patients with these disorders. Taken together, these findings suggest that the A2BR may have a bi-phasic effect at different stages of lung disease. It is protective in acute injury, whereas pro-inflammatory and pro-fibrotic at the chronic stage. Patients with acute lung injury or chronic lung disease may both benefit from adenosine and A2BR-based therapeutics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Priapism, abnormally prolonged penile erection in the absence of sexual excitation, is associated with ischemia-mediated erectile tissue damage and subsequent erectile dysfunction. It is common among males with sickle cell disease (SCD), and SCD transgenic mice are an accepted model of the disorder. Current strategies to manage priapism suffer from a poor fundamental understanding of the molecular mechanisms underlying the disorder. Here we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected priapic activity. ADA enzyme therapy successfully corrected the priapic activity both in vivo and in vitro, suggesting that it was dependent on elevated adenosine levels. Further genetic and pharmacologic evidence demonstrated that A2B adenosine receptor-mediated (A2BR-mediated) cAMP and cGMP induction was required for elevated adenosine-induced prolonged penile erection. Finally, priapic activity in SCD transgenic mice was also caused by elevated adenosine levels and A2BR activation. Thus, we have shown that excessive adenosine accumulation in the penis contributes to priapism through increased A2BR signaling in both Ada -/- and SCD transgenic mice. These findings provide insight regarding the molecular basis of priapism and suggest that strategies to either reduce adenosine or block A2BR activation may prove beneficial in the treatment of this disorder.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adenosine has been implicated in the pathogenesis of chronic lung diseases such as asthma and chronic obstructive pulmonary disease. In vitro studies suggest that activation of the A2B adenosine receptor (A2BAR) results in proinflammatory and profibrotic effects relevant to the progression of lung diseases; however, in vivo data supporting these observations are lacking. Adenosine deaminase-deficient (ADA-deficient) mice develop pulmonary inflammation and injury that are dependent on increased lung adenosine levels. To investigate the role of the A2BAR in vivo, ADA-deficient mice were treated with the selective A2BAR antagonist CVT-6883, and pulmonary inflammation, fibrosis, and airspace integrity were assessed. Untreated and vehicle-treated ADA-deficient mice developed pulmonary inflammation, fibrosis, and enlargement of alveolar airspaces; conversely, CVT-6883-treated ADA-deficient mice showed less pulmonary inflammation, fibrosis, and alveolar airspace enlargement. A2BAR antagonism significantly reduced elevations in proinflammatory cytokines and chemokines as well as mediators of fibrosis and airway destruction. In addition, treatment with CVT-6883 attenuated pulmonary inflammation and fibrosis in wild-type mice subjected to bleomycin-induced lung injury. These findings suggest that A2BAR signaling influences pathways critical for pulmonary inflammation and injury in vivo. Thus in chronic lung diseases associated with increased adenosine, antagonism of A2BAR-mediated responses may prove to be a beneficial therapy.