985 resultados para Adaptive negotiation agents
Resumo:
We study economic conflicts using a game theoretical approach. We model a conflict between two agents where each one has two possible strategies: cease-fire or neglect the truce. Under this setting, we use the concept of pre-donations, namely, a redefinition of the game where agents commit to transfer a share of their output to the other agent (Sertel, 1992), and explain under which conditions a system of pre-donations can facilitate a truce. We find that for conflicts involving high costs there is a distributive mechanism, acceptable for both parties, such that, the best strategy for both parties is Cease-Fire. However, in many cases there are no sufficient conditions for the scheme or pre-donations to be effective. We also analyze some limitations of this framework and extend the model in order to deal with some of these flaws. Finally, in order to illustrate the relevance of the theoretical results we briefly describe some of the circumstances that characterized the negotiation processes between the Colombian government and different illegal groups.
Resumo:
One of the important goals of the intelligent buildings especially in commercial applications is not only to minimize the energy consumption but also to enhance the occupant’s comfort. However, most of current development in the intelligent buildings focuses on an implementation of the automatic building control systems that can support energy efficiency approach. The consideration of occupants’ preferences is not adequate. To improve occupant’s wellbeing and energy efficiency in intelligent environments, we develop four types of agent combined together to form a multi-agent system to control the intelligent buildings. Users’ preferential conflicts are discussed. Furthermore, a negotiation mechanism for conflict resolution, has been proposed in order to reach an agreement, and has been represented in syntax directed translation schemes for future implementation and testing. Keywords: conflict resolution, intelligent buildings, multi-agent systems (MAS), negotiation strategy, syntax directed translation schemes (SDTS).
Resumo:
This study examines differences in net selling price for residential real estate across male and female agents. A sample of 2,020 home sales transactions from Fulton County, Georgia are analyzed in a two-stage least squares, geospatial autoregressive corrected, semi-log hedonic model to test for gender and gender selection effects. Although agent gender seems to play a role in naïve models, its role becomes inconclusive as variables controlling for possible price and time on market expectations of the buyers and sellers are introduced to the models. Clear differences in real estate sales prices, time on market, and agent incomes across genders are unlikely due to differences in negotiation performance between genders or the mix of genders in a two-agent negotiation. The evidence suggests an interesting alternative to agent performance: that buyers and sellers with different reservation price and time on market expectations, such as those selling foreclosure homes, tend to select agents along gender lines.
Resumo:
We study opinion dynamics in a population of interacting adaptive agents voting on a set of issues represented by vectors. We consider agents who can classify issues into one of two categories and can arrive at their opinions using an adaptive algorithm. Adaptation comes from learning and the information for the learning process comes from interacting with other neighboring agents and trying to change the internal state in order to concur with their opinions. The change in the internal state is driven by the information contained in the issue and in the opinion of the other agent. We present results in a simple yet rich context where each agent uses a Boolean perceptron to state their opinion. If the update occurs with information asynchronously exchanged among pairs of agents, then the typical case, if the number of issues is kept small, is the evolution into a society torn by the emergence of factions with extreme opposite beliefs. This occurs even when seeking consensus with agents with opposite opinions. If the number of issues is large, the dynamics becomes trapped, the society does not evolve into factions and a distribution of moderate opinions is observed. The synchronous case is technically simpler and is studied by formulating the problem in terms of differential equations that describe the evolution of order parameters that measure the consensus between pairs of agents. We show that for a large number of issues and unidirectional information flow, global consensus is a fixed point; however, the approach to this consensus is glassy for large societies.
Resumo:
The Grid is a large-scale computer system that is capable of coordinating resources that are not subject to centralised control, whilst using standard, open, general-purpose protocols and interfaces, and delivering non-trivial qualities of service. In this chapter, we argue that Grid applications very strongly suggest the use of agent-based computing, and we review key uses of agent technologies in Grids: user agents, able to customize and personalise data; agent communication languages offering a generic and portable communication medium; and negotiation allowing multiple distributed entities to reach service level agreements. In the second part of the chapter, we focus on Grid service discovery, which we have identified as a prime candidate for use of agent technologies: we show that Grid-services need to be located via personalised, semantic-rich discovery processes, which must rely on the storage of arbitrary metadata about services that originates from both service providers and service users. We present UDDI-MT, an extension to the standard UDDI service directory approach that supports the storage of such metadata via a tunnelling technique that ties the metadata store to the original UDDI directory. The outcome is a flexible service registry which is compatible with existing standards and also provides metadata-enhanced service discovery.
Resumo:
MyGrid is an e-Science Grid project that aims to help biologists and bioinformaticians to perform workflow-based in silico experiments, and help them to automate the management of such workflows through personalisation, notification of change and publication of experiments. In this paper, we describe the architecture of myGrid and how it will be used by the scientist. We then show how myGrid can benefit from agents technologies. We have identified three key uses of agent technologies in myGrid: user agents, able to customize and personalise data, agent communication languages offering a generic and portable communication medium, and negotiation allowing multiple distributed entities to reach service level agreements.
Resumo:
Adaptive devices show the characteristic of dynamically change themselves in response to input stimuli with no interference of external agents. Occasional changes in behaviour are immediately detected by the devices, which right away react spontaneously to them. Chronologically such devices derived from researches in the field of formal languages and automata. However, formalism spurred applications in several other fields. Based on the operation of adaptive automata, the elementary ideas generanting programming adaptive languages are presented.
Resumo:
Motivated by rising drilling operation costs, the oil industry has shown a trend towards real-time measurements and control. In this scenario, drilling control becomes a challenging problem for the industry, especially due to the difficulty associated to parameters modeling. One of the drill-bit performance evaluators, the Rate of Penetration (ROP), has been used in the literature as a drilling control parameter. However, the relationships between the operational variables affecting the ROP are complex and not easily modeled. This work presents a neuro-genetic adaptive controller to treat this problem. It is based on the Auto-Regressive with Extra Input Signals model, or ARX model, to accomplish the system identification and on a Genetic Algorithm (GA) to provide a robust control for the ROP. Results of simulations run over a real offshore oil field data, consisted of seven wells drilled with equal diameter bits, are provided. © 2006 IEEE.
Resumo:
Questa tesi prende spunto da altri studi realizzati nel campo delle esattamente nel campo delle “Swam Intelligence”, una branca delle intelligenze artificiali prende spunto dal comportamento di animali sociali, sopratutto insetti come termini, formiche ed api, per trarne interessanti metafore per la creazione di algoritmi e tecniche di programmazione. Questo tipo di algoritmi, come per gli esempi tratti dalla biologia, risultano dotati di interessanti proprietà adatte alla risoluzione di certi problemi nell'ambito dell'ingegneria. Lo scopo della tesi è quello di mostrare tramite un esempio pratico le proprietà dei sistemi sviluppati tramite i principi delle Swarm Intelligence, evidenziando la flessibilità di questi sistemi. Nello specifico, la mia tesi analizzerà il problema della suddivisione del lavoro in una colonia di formiche, fornendo un esempio pratico quale il compito di cattura di prede in un determinato ambiente. Ho sviluppato un'applicazione software in Java che simula tale comportamento, i dati utilizzati durante le diverse simulazioni possono essere modificati tramite file di testo, in modo da ottenere risultati validi per diversi contesti.
Resumo:
Research on speciation and adaptive radiation has flourished during the past decades, yet factors underlying initiation of reproductive isolation often remain unknown. Parasites represent important selective agents and have received renewed attention in speciation research. We review the literature on parasite-mediated divergent selection in context of ecological speciation and present empirical evidence for three nonexclusive mechanisms by which parasites might facilitate speciation: reduced viability or fecundity of immigrants and hybrids, assortative mating as a pleiotropic by-product of host adaptation, and ecologically-based sexual selection. We emphasise the lack of research on speciation continuums, which is why no study has yet made a convincing case for parasite driven divergent evolution to initiate the emergence of reproductive isolation. We also point interest towards selection imposed by single vs. multiple parasite species, conceptually linking this to strength and multifariousness of selection. Moreover, we discuss how parasites, by manipulating behaviour or impairing sensory abilities of hosts, may change the form of selection that underlies speciation. We conclude that future studies should consider host populations at variable stages of the speciation process, and explore recurrent patterns of parasitism and resistance that could pinpoint the role of parasites in imposing the divergent selection that initiates ecological speciation.
Resumo:
Treating patients with combined agents is a growing trend in cancer clinical trials. Evaluating the synergism of multiple drugs is often the primary motivation for such drug-combination studies. Focusing on the drug combination study in the early phase clinical trials, our research is composed of three parts: (1) We conduct a comprehensive comparison of four dose-finding designs in the two-dimensional toxicity probability space and propose using the Bayesian model averaging method to overcome the arbitrariness of the model specification and enhance the robustness of the design; (2) Motivated by a recent drug-combination trial at MD Anderson Cancer Center with a continuous-dose standard of care agent and a discrete-dose investigational agent, we propose a two-stage Bayesian adaptive dose-finding design based on an extended continual reassessment method; (3) By combining phase I and phase II clinical trials, we propose an extension of a single agent dose-finding design. We model the time-to-event toxicity and efficacy to direct dose finding in two-dimensional drug-combination studies. We conduct extensive simulation studies to examine the operating characteristics of the aforementioned designs and demonstrate the designs' good performances in various practical scenarios.^
Resumo:
My dissertation focuses mainly on Bayesian adaptive designs for phase I and phase II clinical trials. It includes three specific topics: (1) proposing a novel two-dimensional dose-finding algorithm for biological agents, (2) developing Bayesian adaptive screening designs to provide more efficient and ethical clinical trials, and (3) incorporating missing late-onset responses to make an early stopping decision. Treating patients with novel biological agents is becoming a leading trend in oncology. Unlike cytotoxic agents, for which toxicity and efficacy monotonically increase with dose, biological agents may exhibit non-monotonic patterns in their dose-response relationships. Using a trial with two biological agents as an example, we propose a phase I/II trial design to identify the biologically optimal dose combination (BODC), which is defined as the dose combination of the two agents with the highest efficacy and tolerable toxicity. A change-point model is used to reflect the fact that the dose-toxicity surface of the combinational agents may plateau at higher dose levels, and a flexible logistic model is proposed to accommodate the possible non-monotonic pattern for the dose-efficacy relationship. During the trial, we continuously update the posterior estimates of toxicity and efficacy and assign patients to the most appropriate dose combination. We propose a novel dose-finding algorithm to encourage sufficient exploration of untried dose combinations in the two-dimensional space. Extensive simulation studies show that the proposed design has desirable operating characteristics in identifying the BODC under various patterns of dose-toxicity and dose-efficacy relationships. Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Simulation studies show that the proposed design substantially outperforms the conventional multi-arm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while at the same time allocating substantially more patients to efficacious treatments. The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while at the same time providing higher power to identify the best treatment at the end of the trial. Phase II trial studies usually are single-arm trials which are conducted to test the efficacy of experimental agents and decide whether agents are promising to be sent to phase III trials. Interim monitoring is employed to stop the trial early for futility to avoid assigning unacceptable number of patients to inferior treatments. We propose a Bayesian single-arm phase II design with continuous monitoring for estimating the response rate of the experimental drug. To address the issue of late-onset responses, we use a piece-wise exponential model to estimate the hazard function of time to response data and handle the missing responses using the multiple imputation approach. We evaluate the operating characteristics of the proposed method through extensive simulation studies. We show that the proposed method reduces the total length of the trial duration and yields desirable operating characteristics for different physician-specified lower bounds of response rate with different true response rates.
Resumo:
The confluence of three-dimensional (3D) virtual worlds with social networks imposes on software agents, in addition to conversational functions, the same behaviours as those common to human-driven avatars. In this paper, we explore the possibilities of the use of metabots (metaverse robots) with motion capabilities in complex virtual 3D worlds and we put forward a learning model based on the techniques used in evolutionary computation for optimizing the fuzzy controllers which will subsequently be used by metabots for moving around a virtual environment.