799 resultados para Adaptive Learning Systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document is a survey in the research area of User Modeling (UM) for the specific field of Adaptive Learning. The aims of this document are: To define what it is a User Model; To present existing and well known User Models; To analyze the existent standards related with UM; To compare existing systems. In the scientific area of User Modeling (UM), numerous research and developed systems already seem to promise good results, but some experimentation and implementation are still necessary to conclude about the utility of the UM. That is, the experimentation and implementation of these systems are still very scarce to determine the utility of some of the referred applications. At present, the Student Modeling research goes in the direction to make possible reuse a student model in different systems. The standards are more and more relevant for this effect, allowing systems communicate and to share data, components and structures, at syntax and semantic level, even if most of them still only allow syntax integration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our work is focused on alleviating the workload for designers of adaptive courses on the complexity task of authoring adaptive learning designs adjusted to specific user characteristics and the user context. We propose an adaptation platform that consists in a set of intelligent agents where each agent carries out an independent adaptation task. The agents apply machine learning techniques to support the user modelling for the adaptation process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our work is focused on alleviating the workload for designers of adaptive courses on the complexity task of authoring adaptive learning designs adjusted to specific user characteristics and the user context. We propose an adaptation platform that consists in a set of intelligent agents where each agent carries out an independent adaptation task. The agents apply machine learning techniques to support the user modelling for the adaptation process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning contents adaptation has been a subject of interest in the research area of the adaptive hypermedia systems. Defining which variables and which standards can be considered to model adaptive content delivery processes is one of the main challenges in pedagogical design over e-learning environments. In this paper some specifications, architectures and technologies that can be used in contents adaptation processes considering characteristics of the context are described and a proposal to integrate some of these characteristics in the design of units of learning using adaptation conditions in a structure of IMS-Learning Design (IMS-LD) is presented. The key contribution of this work is the generation of instructional designs considering the context, which can be used in Learning Management Systems (LMSs) and diverse mobile devices

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): K.3.1, K.3.2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to foresee how behaviour of a system arises from the interaction of its components over time - i.e. its dynamic complexity – is seen an important ability to take effective decisions in our turbulent world. Dynamic complexity emerges frequently from interrelated simple structures, such as stocks and flows, feedbacks and delays (Forrester, 1961). Common sense assumes an intuitive understanding of their dynamic behaviour. However, recent researches have pointed to a persistent and systematic error in people understanding of those building blocks of complex systems. This paper describes an empirical study concerning the native ability to understand systems thinking concepts. Two different groups - one, academic, the other, professional – submitted to four tasks, proposed by Sweeney and Sterman (2000) and Sterman (2002). The results confirm a poor intuitive understanding of the basic systems concepts, even when subjects have background in mathematics and sciences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to foresee how behaviour of a system arises from the interaction of its components over time - i.e. its dynamic complexity – is seen an important ability to take effective decisions in our turbulent world. Dynamic complexity emerges frequently from interrelated simple structures, such as stocks and flows, feedbacks and delays (Forrester, 1961). Common sense assumes an intuitive understanding of their dynamic behaviour. However, recent researches have pointed to a persistent and systematic error in people understanding of those building blocks of complex systems. This paper describes an empirical study concerning the native ability to understand systems thinking concepts. Two different groups - one, academic, the other, professional – submitted to four tasks, proposed by Sweeney and Sterman (2000) and Sterman (2002). The results confirm a poor intuitive understanding of the basic systems concepts, even when subjects have background in mathematics and sciences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity markets are complex environments with very particular characteristics. MASCEM is a market simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is multiagent based, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the applicability of a reinforcement learning algorithm based on the application of the Bayesian theorem of probability. The proposed reinforcement learning algorithm is an advantageous and indispensable tool for ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to electricity market negotiating players. ALBidS uses a set of different strategies for providing decision support to market players. These strategies are used accordingly to their probability of success for each different context. The approach proposed in this paper uses a Bayesian network for deciding the most probably successful action at each time, depending on past events. The performance of the proposed methodology is tested using electricity market simulations in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets). MASCEM provides the means for simulating a real electricity market environment, based on real data from real electricity market operators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electricity market restructuring, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in an rising complexity in power systems operation. Various power system simulators have been introduced in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex environment. This paper focuses on the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The restructuring of MASCEM (Multi-Agent System for Competitive Electricity Markets), and this system’s integration with MASGriP (Multi-Agent Smart Grid Platform), and ALBidS (Adaptive Learning Strategic Bidding System) provide the means for the exemplification of the usefulness of this ontology. A practical example is presented, showing how common simulation scenarios for different simulators, directed to very distinct environments, can be created departing from the proposed ontology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O ensino à distância cresceu consideravelmente nos últimos anos e a tendência é para que continue a crescer em anos vindouros. No entanto, enquanto que a maioria das plataformas de ensino à distância utilizam a mesma abordagem de ensino para todos os utilizadores, os estudantes que as usam são na realidade pessoas de diferentes culturas, locais, idades e géneros, e que possuem diferentes níveis de educação. Ao contrário do ensino à distância tradicional, os sistemas de hipermédia adaptativa educacional adaptam interface, apresentação de conteúdos e navegação, entre outros, às características, necessidades e interesses específicos de diferentes utilizadores. Apesar da investigação na área de sistemas de hipermédia adaptativa já estar bastante desenvolvida, é necessário efetuar mais desenvolvimento e experimentação de modo a determinar quais são os aspetos mais eficazes destes sistemas e avaliar o seu sucesso. A Plataforma de Aprendizagem Colaborativa da Matemática (PCMAT) é um sistema de hipermédia adaptativa educacional com uma abordagem construtivista, que foi desenvolvido com o objetivo de contribuir para a investigação na área de sistemas de hipermédia adaptativa. A plataforma avalia o conhecimento do utilizador e apresenta conteúdos e atividades adaptadas às características e estilo de aprendizagem dominante de estudantes de matemática do segundo ciclo. O desenvolvimento do PCMAT tem também o propósito de auxiliar os alunos Portugueses com a aprendizagem da matemática. De acordo com o estudo PISA 2012 da OCDE [OECD, 2014], o desempenho dos alunos Portugueses na área da matemática melhorou em relação à edição anterior do estudo, mas os resultados obtidos permanecem abaixo da média da OCDE. Por este motivo, uma das finalidades deste projeto é desenvolver um sistema de hipermédia adaptativa que, ao adequar o ensino da matemática às necessidades específicas de cada aluno, os assista com a aquisição de conhecimento. A adaptação é efetuada pelo sistema usando a informação constante no modelo do utilizador para definir um grafo de conceitos do domínio específico. Este grafo é adaptado do modelo do domínio e utilizado para dar resposta às necessidades particulares de cada aluno. Embora a trajetória inicial seja definida pelo professor, o percurso percorrido no grafo por cada aluno é determinado pela sua interação com o sistema, usando para o efeito a representação do conhecimento do aluno e outras características disponíveis no modelo do utilizador, assim como avaliação progressiva. A adaptação é conseguida através de alterações na apresentação de conteúdos e na estrutura e anotações das hiperligações. A apresentação de conteúdos é alterada mostrando ou ocultando cada um dos vários fragmentos que compõe as páginas dum curso. Estes fragmentos são compostos por diferentes objetos de aprendizagem, tais como exercícios, figuras, diagramas, etc. As mudanças efetuadas na estrutura e anotações das hiperligações têm o objetivo de guiar o estudante, apontando-o na direção do conhecimento mais relevante e mantendo-o afastado de informação inadequada. A escolha de objectos de aprendizagem adequados às características particulares de cada aluno é um aspecto essencial do modelo de adaptação do PCMAT. A plataforma inclui para esse propósito um módulo responsável pela recomendação de objectos de aprendizagem, e um módulo para a pesquisa e recuperação dos mesmos. O módulo de recomendação utiliza lógica Fuzzy para converter determinados atributos do aluno num conjunto de parâmetros que caracterizam o objecto de aprendizagem que idealmente deveria ser apresentado ao aluno. Uma vez que o objecto “ideal” poderá não existir no repositório de objectos de aprendizagem do sistema, esses parâmetros são utilizados pelo módulo de pesquisa e recuperação para procurar e devolver ao módulo de recomendação uma lista com os objectos que mais se assemelham ao objecto “ideal”. A pesquisa é feita numa árvore k-d usando o algoritmo k-vizinhos mais próximos. O modelo de recomendação utiliza a lista devolvida pelo módulo de pesquisa e recuperação para seleccionar o objecto de aprendizagem mais apropriado para o aluno e processa-o para inclusão numa das páginas Web do curso. O presente documento descreve o trabalho desenvolvido no âmbito do projeto PCMAT (PTDS/CED/108339/2008), dando relevância à adaptação de conteúdos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Personalization in e-learning allows the adaptation of contents, learning strategiesand educational resources to the competencies, previous knowledge or preferences of the student. This project takes a multidisciplinary perspective for devising standards-based personalization capabilities into virtual e-learning environments, focusing on the conceptof adaptive learning itinerary, using reusable learning objects as the basis of the system and using ontologies and semantic web technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse présente une revue des réflexions récentes et plus traditionnelles provenant de la théorie des systèmes, de la créativité en emploi, des théories d’organisation du travail et de la motivation afin de proposer une perspective psychologique de la régulation des actions des individus au sein d’environnements de travail complexes et incertains. Des composantes de la Théorie de la Régulation de l’Action (Frese & Zapf, 1994) ainsi que de la Théorie de l’Auto-Détermination (Deci & Ryan, 2000) sont mises en relation afin d’évaluer un modèle définissant certains schémas cognitifs clés associés aux tâches individuelles et collectives en emploi. Nous proposons que ces schémas cognitifs, organisés de manière hiérarchique, jouent un rôle central dans la régulation d’une action efficace au sein d’un système social adaptatif. Nos mesures de ces schémas cognitifs sont basées sur des échelles de mesure proposées dans le cadre des recherches sur l’ambiguïté de rôle (eg. Sawyer, 1992; Breaugh & Colihan, 1994) et sont mis en relation avec des mesures de satisfaction des besoins psychologiques (Van den Broeck, Vansteenkiste, De Witte, Soenens & Lens, 2009) et du bien-être psychologique (Goldberg, 1972). Des données provenant de 153 employés à temps plein d’une compagnie de jeu vidéo ont été récoltées à travers deux temps de mesure. Les résultats révèlent que différents types de schémas cognitifs associés aux tâches individuelles et collectives sont liés à la satisfaction de différents types de besoin psychologiques et que ces derniers sont eux-mêmes liés au bien-être psychologique. Les résultats supportent également l’hypothèse d’une organisation hiérarchique des schémas cognitifs sur la base de leur niveau d’abstraction et de leur proximité avec l’exécution concrète de l’action. Ces résultats permettent de fournir une explication initiale au processus par lequel les différents types de schémas cognitifs développés en emplois et influencé par l’environnement de travail sont associés à l’attitude des employés et à leur bien-être psychologique. Les implications pratiques et théoriques pour la motivation, l’apprentissage, l’habilitation, le bien-être psychologique et l’organisation du travail dans les environnements de travail complexes et incertains sont discutés.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, a generalized passivity concept for linear multivariable systems was obtained which allows circumventing the restrictiveness of the usual passivity concept. The latter is associated with the classical SPR (Strictly Positive Real) condition whereas the new concept of passivity is associated with the so called WSPR condition and its advantage in multivariable systems is that it does not require a restrictive symmetry condition of SPR systems. As a result, it allows the design of multivariable adaptive control that, unlike some existing factorization approaches, does not imply in additional overparameterization of the adaptive controller. In this paper, we complete a previously established WSPR sufficient condition and prove that it is also necessary. We also propose some methods of passification by either premultiplying the system output tracking error vector or the system input vector by an adequate passifying matrix multiplier, so that the resulting input/output transfer function becomes WSPR. The efficiency of our proposals are illustrated by simulation utilizing a well known robotics adaptive visual servoing problem. © 2011 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Competitive learning is an important machine learning approach which is widely employed in artificial neural networks. In this paper, we present a rigorous definition of a new type of competitive learning scheme realized on large-scale networks. The model consists of several particles walking within the network and competing with each other to occupy as many nodes as possible, while attempting to reject intruder particles. The particle's walking rule is composed of a stochastic combination of random and preferential movements. The model has been applied to solve community detection and data clustering problems. Computer simulations reveal that the proposed technique presents high precision of community and cluster detections, as well as low computational complexity. Moreover, we have developed an efficient method for estimating the most likely number of clusters by using an evaluator index that monitors the information generated by the competition process itself. We hope this paper will provide an alternative way to the study of competitive learning.