856 resultados para Adaptive Control
Resumo:
There is an increasing call for applications which use a mixture of batteries. These hybrid battery solutions may contain different battery types for example; using second life ex-transportation batteries in grid support applications or a combination of high power, low energy and low power, high energy batteries to meet multiple energy requirements or even the same battery types but under different states of health for example, being able to hot swap out a battery when it has failed in an application without changing all the batteries and ending up with batteries with different performances, capacities and impedances. These types of applications typically use multi-modular converters to allow hot swapping to take place without affecting the overall performance of the system. A key element of the control is how the different battery performance characteristics may be taken into account and the how the power is then shared among the different batteries in line with their performance. This paper proposes a control strategy which allows the power in the batteries to be effectively distributed even under capacity fade conditions using adaptive power sharing strategy. This strategy is then validated against a system of three different battery types connected to a multi-modular converter both with and without capacity fade mechanisms in place.
Resumo:
International audience
Resumo:
This paper considers the question of designing a fully image based visual servo control for a dynamic system. The work is motivated by the ongoing development of image based visual servo control of small aerial robotic vehicles. The observed targets considered are coloured blobs on a flat surface to which the normal direction is known. The theoretical framework is directly applicable to the case of markings on a horizontal floor or landing field. The image features used are a first order spherical moment for position and an image flow measurement for velocity. A fully non-linear adaptive control design is provided that ensures global stability of the closed-loop system. © 2005 IEEE.
Resumo:
In this paper, the trajectory tracking control of an autonomous underwater vehicle (AUVs) in six-degrees-of-freedom (6-DOFs) is addressed. It is assumed that the system parameters are unknown and the vehicle is underactuated. An adaptive controller is proposed, based on Lyapunov׳s direct method and the back-stepping technique, which interestingly guarantees robustness against parameter uncertainties. The desired trajectory can be any sufficiently smooth bounded curve parameterized by time even if consist of straight line. In contrast with the majority of research in this field, the likelihood of actuators׳ saturation is considered and another adaptive controller is designed to overcome this problem, in which control signals are bounded using saturation functions. The nonlinear adaptive control scheme yields asymptotic convergence of the vehicle to the reference trajectory, in the presence of parametric uncertainties. The stability of the presented control laws is proved in the sense of Lyapunov theory and Barbalat׳s lemma. Efficiency of presented controller using saturation functions is verified through comparing numerical simulations of both controllers.
Resumo:
The author presents adaptive control techniques for controlling the flow of real-time jobs from the peripheral processors (PPs) to the central processor (CP) of a distributed system with a star topology. He considers two classes of flow control mechanisms: (1) proportional control, where a certain proportion of the load offered to each PP is sent to the CP, and (2) threshold control, where there is a maximum rate at which each PP can send jobs to the CP. The problem is to obtain good algorithms for dynamically adjusting the control level at each PP in order to prevent overload of the CP, when the load offered by the PPs is unknown and varying. The author formulates the problem approximately as a standard system control problem in which the system has unknown parameters that are subject to change. Using well-known techniques (e.g., naive-feedback-controller and stochastic approximation techniques), he derives adaptive controls for the system control problem. He demonstrates the efficacy of these controls in the original problem by using the control algorithms in simulations of a queuing model of the CP and the load controls.
Resumo:
For high performance aircrafts, the flight control system needs to be quite effective in both assuring accurate tracking of pilot commands, while simultaneously assuring overall stability of the aircraft. In addition, the control system must also be sufficiently robust to cater to possible parameter variations. The primary aim of this paper is to enhance the robustness of the controller for a HPA using neuro-adaptive control design. Here the architecture employs a network of Gaussian Radial basis functions to adaptively compensate for the ignored system dynamics. A stable weight mechanism is determined using Lyapunov theory. The network construction and performance of the resulting controller are illustrated through simulations with a low-fidelity six –DOF model of F16 that is available in open literature.
Resumo:
Based on dynamic inversion, a relatively straightforward approach is presented in this paper for nonlinear flight control design of high performance aircrafts, which does not require the normal and lateral acceleration commands to be first transferred to body rates before computing the required control inputs. This leads to substantial improvement of the tracking response. Promising results are obtained from six degree-offreedom simulation studies of F-16 aircraft, which are found to be superior as compared to an existing approach (which is also based on dynamic inversion). The new approach has two potential benefits, namely reduced oscillatory response (including elimination of non-minimum phase behavior) and reduced control magnitude. Next, a model-following neuron-adaptive design is augmented the nominal design in order to assure robust performance in the presence of parameter inaccuracies in the model. Note that in the approach the model update takes place adaptively online and hence it is philosophically similar to indirect adaptive control. However, unlike a typical indirect adaptive control approach, there is no need to update the individual parameters explicitly. Instead the inaccuracy in the system output dynamics is captured directly and then used in modifying the control. This leads to faster adaptation, which helps in stabilizing the unstable plant quicker. The robustness study from a large number of simulations shows that the adaptive design has good amount of robustness with respect to the expected parameter inaccuracies in the model.
Resumo:
A neural-network-aided nonlinear dynamic inversion-based hybrid technique of model reference adaptive control flight-control system design is presented in this paper. Here, the gains of the nonlinear dynamic inversion-based flight-control system are dynamically selected in such a manner that the resulting controller mimics a single network, adaptive control, optimal nonlinear controller for state regulation. Traditional model reference adaptive control methods use a linearized reference model, and the presented control design method employs a nonlinear reference model to compute the nonlinear dynamic inversion gains. This innovation of designing the gain elements after synthesizing the single network adaptive controller maintains the advantages that an optimal controller offers, yet it retains a simple closed-form control expression in state feedback form, which can easily be modified for tracking problems without demanding any a priori knowledge of the reference signals. The strength of the technique is demonstrated by considering the longitudinal motion of a nonlinear aircraft system. An extended single network adaptive control/nonlinear dynamic inversion adaptive control design architecture is also presented, which adapts online to three failure conditions, namely, a thrust failure, an elevator failure, and an inaccuracy in the estimation of C-M alpha. Simulation results demonstrate that the presented adaptive flight controller generates a near-optimal response when compared to a traditional nonlinear dynamic inversion controller.
Resumo:
This article describes two neural network modules that form part of an emerging theory of how adaptive control of goal-directed sensory-motor skills is achieved by humans and other animals. The Vector-Integration-To-Endpoint (VITE) model suggests how synchronous multi-joint trajectories are generated and performed at variable speeds. The Factorization-of-LEngth-and-TEnsion (FLETE) model suggests how outflow movement commands from a VITE model may be performed at variable force levels without a loss of positional accuracy. The invariance of positional control under speed and force rescaling sheds new light upon a familiar strategy of motor skill development: Skill learning begins with performance at low speed and low limb compliance and proceeds to higher speeds and compliances. The VITE model helps to explain many neural and behavioral data about trajectory formation, including data about neural coding within the posterior parietal cortex, motor cortex, and globus pallidus, and behavioral properties such as Woodworth's Law, Fitts Law, peak acceleration as a function of movement amplitude and duration, isotonic arm movement properties before and after arm-deafferentation, central error correction properties of isometric contractions, motor priming without overt action, velocity amplification during target switching, velocity profile invariance across different movement distances, changes in velocity profile asymmetry across different movement durations, staggered onset times for controlling linear trajectories with synchronous offset times, changes in the ratio of maximum to average velocity during discrete versus serial movements, and shared properties of arm and speech articulator movements. The FLETE model provides new insights into how spina-muscular circuits process variable forces without a loss of positional control. These results explicate the size principle of motor neuron recruitment, descending co-contractive compliance signals, Renshaw cells, Ia interneurons, fast automatic reactive control by ascending feedback from muscle spindles, slow adaptive predictive control via cerebellar learning using muscle spindle error signals to train adaptive movement gains, fractured somatotopy in the opponent organization of cerebellar learning, adaptive compensation for variable moment-arms, and force feedback from Golgi tendon organs. More generally, the models provide a computational rationale for the use of nonspecific control signals in volitional control, or "acts of will", and of efference copies and opponent processing in both reactive and adaptive motor control tasks.
Resumo:
As one of key technologies in photovoltaic converter control, Maximum Power Point Tracking (MPPT) methods can keep the power conversion efficiency as high as nearly 99% under the uniform solar irradiance condition. However, these methods may fail when shading conditions occur and the power loss can over as much as 70% due to the multiple maxima in curve in shading conditions v.s. single maximum point in uniformly solar irradiance. In this paper, a Real Maximum Power Point Tracking (RMPPT) strategy under Partially Shaded Conditions (PSCs) is introduced to deal with this kind of problems. An optimization problem, based on a predictive model which will change adaptively with environment, is developed to tracking the global maxima and corresponding adaptive control strategy is presented. No additional circuits are required to obtain the environment uncertainties. Finally, simulations show the effectiveness of proposed method.
Resumo:
In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.
Resumo:
A real-time parameter estimator for the climate discrete-time dynamic models of a greenhouse located at the North of Portugal are presented. The experiments showed that the second order models identified for the air temperature and humidity achieve a close agreement between simulated and experimantal data.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Intelligent transport system (ITS) has large potentials on road safety applications as well as nonsafety applications. One of the big challenges for ITS is on the reliable and cost-effective vehicle communications due to the large quantity of vehicles, high mobility, and bursty traffic from the safety and non-safety applications. In this paper, we investigate the use of dedicated short-range communications (DSRC) for coexisting safety and non-safety applications over infrastructured vehicle networks. The main objective of this work is to improve the scalability of communications for vehicles networks, ensure QoS for safety applications, and leave as much as possible bandwidth for non-safety applications. A two-level adaptive control scheme is proposed to find appropriate message rate and control channel interval for safety applications. Simulation results demonstrated that this adaptive method outperforms the fixed control method under varying number of vehicles. © 2012 Wenyang Guan et al.
Resumo:
This paper considers the question of designing a fully image-based visual servo control for a class of dynamic systems. The work is motivated by the ongoing development of image-based visual servo control of small aerial robotic vehicles. The kinematics and dynamics of a rigid-body dynamical system (such as a vehicle airframe) maneuvering over a flat target plane with observable features are expressed in terms of an unnormalized spherical centroid and an optic flow measurement. The image-plane dynamics with respect to force input are dependent on the height of the camera above the target plane. This dependence is compensated by introducing virtual height dynamics and adaptive estimation in the proposed control. A fully nonlinear adaptive control design is provided that ensures asymptotic stability of the closed-loop system for all feasible initial conditions. The choice of control gains is based on an analysis of the asymptotic dynamics of the system. Results from a realistic simulation are presented that demonstrate the performance of the closed-loop system. To the author's knowledge, this paper documents the first time that an image-based visual servo control has been proposed for a dynamic system using vision measurement for both position and velocity.