202 resultados para Acythosiphon pisum
Resumo:
We examined the role of cytokinins (CKs) in release of apical dominance in lateral buds of chickpea (Cicer arietinum L.). Shoot decapitation or application of CKs (benzyladenine, zeatin or dihydrozeatin) stimulated rapid bud growth. Time-lapse video recording revealed growth initiation within 2 h of application of 200 pmol benzyladenine or within 3 h of decapitation. Endogenous CK content in buds changed little in the first 2 h after shoot decapitation, but significantly increased by 6 h, somewhat later than the initiation of bud growth. The main elevated CK was zeatin riboside, whose content per bud increased 7-fold by 6 h and 25-fold by 24 h. Lesser changes were found in amounts of zeatin and isopentenyl adenine CKs. We have yet to distinguish whether these CKs are imported from the roots via the xylem stream or are synthesised in situ in the buds, but CKs may be part of an endogenous signal involved in lateral bud growth stimulation following shoot decapitation. To our knowledge, this is the first detailed report of CK levels in buds themselves during release of apical dominance.
Resumo:
Rms1 is one of the series of five ramosus loci in pea (Pisum sativum L.) in which recessive mutant alleles confer increased branching at basal and aerial vegetative nodes. Shoots of the nonallelic rms1 and rms2 mutants are phenotypically similar in most respects. However, we found an up to 40-fold difference in root-sap zeatin riboside ([9R]Z) concentration between rms1 and rms2 plants. Compared with wild-type (WT) plants, the concentration of [9R]Z in rms1 root sap was very low and the concentration in rms2 root sap was slightly elevated. To our knowledge, the rms1 mutant is therefore the second ramosus mutant (rms4 being the first) to be characterized with low root-sap [9R]Z content. Like rms2, the apical bud and upper nodes of rms1 plants contain elevated indole-3-acetic acid levels compared with WT shoots. Therefore, the rms1 mutant demonstrates that high shoot auxin levels and low root-sap cytokinin levels are not necessarily correlated with increased apical dominance in pea. A graft-transmissible basis of action has been demonstrated for both mutants from reciprocal grafts between mutant and WT plants. Branching was also largely inhibited in rms1 shoots when grafted to rms2 rootstocks, but was not inhibited in rms2 shoots grafted to rms1 rootstocks. These grafting results are discussed, along with the conclusion that hormone-like signals other than auxin and cytokinin are also involved.
Resumo:
Simple, rapid and stable sperm evaluation methods which have been optimized for common marmoset (Callithrix jacchus) are critical for studies involving collection and evaluation of sperm in the field. This is particularly important for new species groups such as Callitrichidae where the sperm have been little studied. Of this family, C jacchus is the best known, and has been chosen as a model species for other members of the genus Callithrix. The fundamental evaluation parameters for sperm of any species are viability and acrosomal status. Semen samples were collected by penile vibratory stimulation. To evaluate sperm plasma membrane integrity, Eosin-Nigrosin was tested here for the common marmoset sperm to be used under field conditions. Further, a non-fluorescent stain for acrosome, the ""Simple"" stain, developed for domestic and wild cats, was tested on common marmoset sperm. This was compared with a fluorescent staining, Fluorescein isothiocyanate-Pisum sativum agglutinin (FITC-PSA), routinely used and validated for common marmoset at the German Primate Centre to evaluate acrosomal integrity. Results obtained with the ""Simple"" stain showed a marked differentiation between sperm with intact and non-intact acrosome both with and without ionophore treatment and closely correlated with results obtained with FITC-PSA. Temperature had no effect on the results with the ""Simple"" stain and the complete processing is simple enough to be carried out under field conditions. These findings indicated that the ""Simple"" stain and Eosin-Nigrosin provide rapid and accurate results for C. jacchus sperm and that those methods can be reliably used as field tools for sperm evaluation for this species. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The process of cryopreservation impairs sperm cell function, potentially leading to a reduction in fertility. The objectives of the present study were to evaluate the effects that cryopreservation using two different extenders has on sperm motility and mitochondrial function, as well as on the integrity of plasma membranes, acrosomal membranes and chromatin, using practical and objective techniques. The focus of the present study was to identify correlations between alterations in sperm membranes and sperm motility in cryopreserved bovine spermatozoa. Seven ejaculates were collected from eight Simmental bulls (n = 56). After collection, semen volume and concentration were assessed for purposes of dilution. Sperm motility was evaluated subjectively and by computer-assisted semen analysis, morphological characteristics were evaluated by differential interference microscopy, the integrity of plasma and acrosomal membranes, as well as mitochondrial function, were determined using a combination of fluorescent probes containing fluorescein isothiocyanate-Pisum sativum agglutinin, propidium iodide or 5,5`,6,6`-tetrachloro-1,1`,3,3`-tetraethylbenzimidazolearbocyanine iodide. Chromatin integrity was evaluated using the acridine orange technique. The semen was subsequently divided into two aliquots and diluted with one of two extenders (Bioxcell(R) or Botu-Bov(R)), after which both were packaged in 0.5 mL straws and frozen using an automated system. Two straws of semen from each treatment were thawed, and the semen parameters were evaluated as described above. Cryopreservation of sperm reduced motility, damaging plasma and acrosomal membranes, as well as decreasing mitochondrial function. The Botu-Bov(R) extender was more effective in preserving sperm motility and membrane integrity than was the Bioxcell(R) extender. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The veg1 (vegetative) mutant in pea (Pisum sativum L.) does not flower under any circumstances and gi (gigas) mutants remain vegetative under certain conditions. gi plants are deficient in production of floral stimulus, whereas veg1 plants lack a response to floral stimulus. During long days in particular, these non-flowering mutant plants eventually enter a stable compact phase characterised by a large reduction in internode length, small leaves and growth of lateral shoots from the upper-stem (aerial) nodes. The first-order laterals in turn produce second-order laterals and so on in a reiterative pattern. The apical bud is reduced in size but continues active growth. Endogenous hormone measurements and gibberellin application studies with gi-1, gi-2 and veg1 plants indicate that a reduction in gibberellin and perhaps indole-3-acetic acid level may account, at least partially, for the compact aerial shoot phenotype. In the gi-1 mutant, the compact phenotype is rescued by transfer from a 24- to an 8-h photoperiod. We propose that in plants where flowering is prevented by a lack of floral stimulus or an inability to respond, the large reduction in photoperiod gene activity during long days may lead to a reduction in apical sink strength that is manifest in an altered hormone profile and weak apical dominance.
Resumo:
The ramosus (rms) mutation (rms1) of pea (Pisum sativum) causes increased branching through modification of graft-transmissible signal(s) produced in rootstock and shoot. Additional grafting techniques have led us to propose that the novel signal regulated by Rms1 moves acropetally in shoots and acts as a branching inhibitor. Epicotyl interstock grafts showed that wild-type (WT) epicotyls grafted between rms1 scions and rootstocks can revert mutant scions to a WT non-branching phenotype. Mutant scions grafted together with mutant and WT rootstocks did not branch despite a contiguous mutant root-shoot system. The primary action of Rms1 is, therefore, unlikely to be to block transport of a branching stimulus from root to shoot. Rather, Rms1 may influence a long-distance signal that functions, directly or indirectly, as a branching inhibitor. It can be deduced that this signal moves acropetally in shoots because WT rootstocks inhibit branching in rms1 shoots, and although WT scions do not branch when grafted to mutant rootstocks, they do not inhibit branching in rms1 cotyledonary shoots growing from the same rootstocks. The acropetal direction of transport of the Rms1 signal supports previous evidence that the rms1 lesion is not in an auxin biosynthesis or transport pathway. The different branching phenotypes of WT and rms1 shoots growing from the same rms1 rootstock provides further evidence that the shoot has a major role in the regulation of branching and, moreover, that root-exported cytokinin is not the only graft-transmissible signal regulating branching in intact pea plants.
Resumo:
The fifth increased branching ramosus (rms) mutant, rms5, from pea (Pisum sativum), is described here for phenotype and grafting responses with four other rms mutants. Xylem sap zeatin riboside concentration and shoot auxin levels in rms5 plants have also been compared with rms1 and wild type (WT). Rms1 and Rms5 appear to act closely at the biochemical or cellular level to control branching, because branching was inhibited in reciprocal epicotyl grafts between rms5 or rms1 and WT plants, but not inhibited in reciprocal grafts between rms5 and rmsl seedlings. The weakly transgressive or slightly additive phenotype of the rmsl rms5 double mutant provides further evidence for this interaction. Like rms1, rms5 rootstocks have reduced xylem sap cytokinin concentrations, and rms5 shoots do not appear deficient in indole-3-acetic acid or 4-chloroindole-3-acetic acid. Rms1 and Rms5 are similar in their interaction with other Rms genes. Reciprocal grafting studies with rmsl, rms2, and rms5, together with the fact that root xylem sap cytokinin concentrations are reduced in rms1 and rms5 and elevated in rms2 plants, indicates that Rms1 and Rms5 may control a different pathway than that controlled by Rms2. Our studies indicate that Rms1 and Rms5 may regulate a novel graft-transmissible signal involved in the control of branching.
Resumo:
Our studies on two branching mutants of pea (Pisum sativum L.) have identified a further Ramosus locus, Rms6, with two recessive or partially recessive mutant alleles: rms6-1 (type line S2-271) and rms6-2 (type line K586). Mutants rms6-1 and rms6-2 were derived from dwarf and tall cultivars, Solara and Torsdag, respectively. The rms6 mutants are characterized by increased branching from basal nodes. In contrast, mutants rms1 through rms5 have increased branching from both basal and aerial (upper stem) nodes. Buds at the cotyledonary node of wild-type (WT) plants remain dormant but in rms6 plants these buds were usually released from dormancy. Their growth was either subsequently inhibited, sometimes even prior to emergence above ground, or they grew into secondary stems. The mutant phenotype was strongest for rms6-1 on the dwarf background. Although rms6-2 had a weak single-mutant phenotype, the rms3-1 rms6-2 double mutant showed clear transgression and an additive branching phenotype, with a total lateral length almost 2-fold greater than rms3-1 and nearly 5-fold greater than rms6-2 . Grafting studies between WT and rms6-1 plants demonstrated the primary action of Rms6 may be confined to the shoot. Young WT and rms6-1 shoots had similar auxin levels, and decapitated plants had a similar magnitude of response to applied auxin. Abscisic acid levels were elevated 2-fold at node 2 of young rms6-1 plants. The Rms6 locus mapped to the R to Gp segment of linkage group V (chromosome 3). The rms6 mutants will be useful for basic research and also have possible agronomical value.
Resumo:
Shoot branching is inhibited by auxin transported down the stem from the shoot apex. Auxin does not accumulate in inhibited buds and so must act indirectly. We show that mutations in the MAX4 gene of Arabidopsis result in increased and auxin-resistant bud growth. Increased branching in max4 shoots is restored to wild type by grafting to wild-type rootstocks, suggesting that MAX4 is required to produce a mobile branch-inhibiting signal, acting downstream of auxin. A similar role has been proposed for the pea gene, RMS1. Accordingly, MAX4 and RMS1 were found to encode orthologous, auxin-inducible members of the polyene dioxygenase family.
Resumo:
Stomatal conductance (g(s)) of pepper (Capsicum annuum L.) plants decreased during the second photoperiod (day 2) after withholding nitrate (N). Stomatal closure of N-deprived plants was not associated with a decreased shoot water potential (Psi(shoot)); conversely Psi(shoot) was lower in N-supplied plants. N deprivation transiently (days 2 and 3) alkalized (0.2-0.3 pH units) xylem sap exuded from de-topped root systems under root pressure, and xylem sap expressed from excised shoots by pressurization. The ABA concentration of expressed sap increased 3-4-fold when measured on days 2 and 4. On day 2, leaves detached from N-deprived and N-supplied plants showed decreased transpiration rates when fed an alkaline (pH 7) artificial xylem (AX) solution, independent of the ABA concentration (10-100 nM) supplied. Thus changes in xylem sap composition following N deprivation can potentially close stomata. However, the lower transpiration rate of detached N-deprived leaves relative to N-supplied leaves shows that factors residing within N-deprived leaves also mediate stomatal closure, and that these factors assume greater importance as the duration of N deprivation increases.
Resumo:
The ABA-deficient wilty pea (Pisum sativum L.) and its wild-type (WT) were grown at two levels of nitrogen supply (0.5 and 5.0 mM) for 5-6 weeks from sowing, to determine whether leaf ABA status altered the leaf growth response to N deprivation. Plants were grown at high relative humidity to prevent wilting of the wilty peas. Irrespective of N supply, expanding wilty leaflets had ca 50% less ABA than WT leaflets but similar ethylene evolution rates. Fully expanded wilty leaflets had lower relative water contents (RWC) and were 10-60% smaller in area (according to the node of measurement) than WT leaflets. However, there were no genotypic differences in plant relative leaf expansion rate (RLER). Growth of both genotypes at 0.5 mM N increased the RWC of fully expanded leaflets, but did not alter ethylene evolution or ABA concentration of expanding leaflets. Plants grown at 0.5 mM N showed a 20-30% reduction in RLER, which was similar in magnitude in both wilty and WT peas. Thus, leaf ABA status did not alter the leaf growth response to N deprivation.
Resumo:
Chlorophyll fluorescence measurements have a wide range of applications from basic understanding of photosynthesis functioning to plant environmental stress responses and direct assessments of plant health. The measured signal is the fluorescence intensity (expressed in relative units) and the most meaningful data are derived from the time dependent increase in fluorescence intensity achieved upon application of continuous bright light to a previously dark adapted sample. The fluorescence response changes over time and is termed the Kautsky curve or chlorophyll fluorescence transient. Recently, Strasser and Strasser (1995) formulated a group of fluorescence parameters, called the JIP-test, that quantify the stepwise flow of energy through Photosystem II, using input data from the fluorescence transient. The purpose of this study was to establish relationships between the biochemical reactions occurring in PS II and specific JIP-test parameters. This was approached using isolated systems that facilitated the addition of modifying agents, a PS II electron transport inhibitor, an electron acceptor and an uncoupler, whose effects on PS II activity are well documented in the literature. The alteration to PS II activity caused by each of these compounds could then be monitored through the JIP-test parameters and compared and contrasted with the literature. The known alteration in PS II activity of Chenopodium album atrazine resistant and sensitive biotypes was also used to gauge the effectiveness and sensitivity of the JIP-test. The information gained from the in vitro study was successfully applied to an in situ study. This is the first in a series of four papers. It shows that the trapping parameters of the JIP-test were most affected by illumination and that the reduction in trapping had a run-on effect to inhibit electron transport. When irradiance exposure proceeded to photoinhibition, the electron transport probability parameter was greatly reduced and dissipation significantly increased. These results illustrate the advantage of monitoring a number of fluorescence parameters over the use of just one, which is often the case when the F-V/F-M ratio is used.
Resumo:
The volatiles from Coriandrum sativum L., Satureja montana L., Santolina chamaecyparissus L., and Thymus vulgaris L. were isolated by hydrodistillation (essential oil) and supercritical fluid extraction (volatile oil). Their effect on seed germination and root and shoot growth of the surviving seedlings of four crops (Zea mays L., Triticum durum L., Pisum sativum L., and Lactuca sativa L.) and two weeds (Portulaca oleracea L. and Vicia sativa L.) was investigated and compared with those of two synthetic herbicides, Agrocide and Prowl. The volatile oils of thyme and cotton lavender seemed to be promising alternatives to the synthetic herbicides because they were the least injurious to the crop species. The essential oil of winter savory, on the other hand, affected both crop and weeds and can be appropriate for uncultivated fields.
Resumo:
O presente trabalho teve o objetivo de estudar alguns aspectos da nutrição da ervilha (Pisum sativum, L.), variedade Okaw ("Torta-de-Flor-Roxa") e Asgrow 40 no que concerne: 1 - Efeitos das omissões dos macronutrientes e do boro, na obtenção de um quadro sintomatológico das carências, na variedade Asgrow 40. 2 - Efeitos das carências dos macronutrientes e do boro na produção de matéria seca e composição química na variedade Asgrow 40. Sementes de ervilha (Pisum sativum, L.) da variedade Asgrow 40, foram postas a germinar em silica, mantendo-se um teor de umidade adequado. Passou-se a regar as plântulas com soluções nutritivas com omissões dos nutrientes, entre 20 e 25 dias após a germinação. Tão logo se delineou o quadro sintomatológico das carências, as plantas foram coletadas, mensuradas em altura (cm) e peso da matéria seca (g). Divididas em raízes, caules, folhas inferiores e superiores, flores, vagens e analisadas. Os dados mostram que: 1 - As omissões dos macronutrientes com excessão do magnésio e do enxofre, apresentaram sintomas visuais de deficiência características. 2 - A produção da matéria seca foi afetada em todos os tratamentos com omissão de nutrientes, com excessão daqueles nos quais foram omitidos o magnésio e/ou enxofre. 3 - Os teores dos nutrientes expressos em porcentagem e/ou partes por milhão em folhas apresentando ou não sintomas de carências foram: