996 resultados para Acid Mine
Resumo:
J. Smuda: Geochemical evolution of active porphyry copper tailings impoundments Thesis abstract Mine waste is the largest volume of materials handled in the world. The oxidation of sulfidic mine waste may result in the release of acid mine drainage (AMD) rich in heavy metals and arsenic to the environment, one of the major problems the mining industry is facing today. To control and reduce this environmental impact, it is crucial to identify the main geochemical and hydrological processes influencing contaminant liberation, transport, and retention. This thesis presents the results of a geochemical, mineralogical and stable isotope study (δ2H, δ18O, δ34S) from two active porphyry copper tailings impoundments in Mediterranean (Carén tailings impoundment, El Teniente mine, Central Chile) and hyper-arid climate (Talabre tailings impoundment, Chuquicamata, Northern Chile) from the deposition in alkaline environment (pH 10.5) towards acidification after several years of exposure. The major hydrological results were the identification of vertical contaminant and water transport in the uppermost, not water-saturated zone, triggered by capillary rise due to evaporation, and infiltration downwards due to new tailings deposition, and of horizontal transport in the groundwater zone. At the surface of the sedimented tailings, evaporation of pore water led to the precipitation of Na-Ca-Mg sulfates (e.g., gypsum, tenorite), in hyper-arid climate also halite. At the Carén tailings impoundment, renewed deposition in a 4-week interval inhibited a pH decrease below neutral values and the formation of an efflorescent salt crust. At the Talabre tailings impoundment, deposition breaks of several years resulted in the formation of acidic oxidation zones in the timeframe of less than 4 years. This process enabled the transport of liberated Cu, Zn, and Fe via capillary rise to the surface, where these metals precipitated as heavy-metal sulfates (e.g., devilline, krohnkite) and chlorides (eriochalcite, atacamite). Renewed depositing may dissolve efflorescent salts and transport liberated elements towards the groundwater zone. This zone was found to be highly dynamic due to infiltration and mixing with water from different sources, like groundwater, catchment water, and infiltration from superficial waters. There, Cu was found to be partially mobile due to complexation with Cl (in Cl-rich groundwater, Talabre) and dissolved organic matter (in zones with infiltration of catchment water rich in dissolved organic matter, Carén). A laboratory study on the isotopic fractionation of sulfur and oxygen of sulfate in different minerals groups (water-soluble sulfates, low- and high-crystalline Fe(III) oxyhydroxides) contributed to the use of stable isotopes as tracer of geochemical and transport processes for environmental studies. The results highlight that a detailed geochemical, stable isotope and mineralogical study permits the identification of contamination processes and pathways already during the deposition of mine tailings. This knowledge allows the early planning of adequate actions to reduce and control the environmental impact during tailings deposition and after the closing of the impoundment. J. Smuda: Geochemical evolution of active porphyry copper tailings impoundments Résumé de these Les déchets miniers constituent les plus grands volumes de matériel gérés dans le monde. L'oxydation des déchets miniers sulfuriques peut conduire à la libération de drainages miniers acides (DMA) riches en métaux et arsenic dans l'environnement, ce qui est l'un des principaux problèmes de l'industrie minière aujourd'hui. Pour contrôler et réduire ces impacts sur l'environnement, il est crucial d'identifier les principaux processus géochimiques et hydrologiques influençant la libération, le transport et la rétention des contaminants. Cette thèse présente les résultats d'une étude géochimique, minéralogique et des isotopes stables (δ2H, δ18O, δ34S) sur des déchets miniers de 2 sites de dépôt actifs en climat méditerranéen (Dépôt de déchets de Carén, mine de El Teniente, Centre du Chili) et en climat hyper-aride (Dépôt de déchets de Talabre, mine de Chuquicamata, Nord du Chili). L'objectif était d'étudier l'évolution des déchets de la déposition en milieu alcalin (pH = 10.5) vers l'acidification après plusieurs années d'exposition. Le principal résultat hydrologique a été l'identification de 2 types de transport : un transport vertical de l'eau et des contaminants dans la zone non saturée en surface, induit par la montée capillaire due à l'évaporation et par l'infiltration subséquente de la déposition de sédiments frais ; et un transport horizontal dans la zone des eaux souterraines. À la surface des déchets, l'évaporation de l'eau interstitielle conduit à la précipitation de sulfates de Na-Ca-Mg (ex. gypse, ténorite) et halite en climat hyper-aride. Dans le site de Carén, une nouvelle déposition de déchets frais à 4 semaines intervalle a empêché la baise du pH en deçà des valeurs neutres et la formation d'une croûte de sels efflorescentes en surface. Dans le site de Talabre, les fentes de dessiccation des dépôts ont entraîné la formation d'une zone d'oxydation à pH acide en moins de 4 ans. Ce processus a permis la libération et le transport par capillarité de Cu, Zn, Fe vers la surface, où ces éléments précipitent sous forme de sulfates de métaux lourds (ex., dévilline, krohnkite) de chlorures (ex. ériochalcite, atacamite). Une nouvelle déposition de sédiments frais pourrait dissoudre ces sels et les transporter vers la zone des eaux souterraines. Cette dernière zone était très dynamique en raison du mélange d'eaux provenant de différentes sources, comme les eaux souterraines, l'eau de captage et l'infiltration des eaux superficielles. Egalement dans cette zone, le cuivre était partiellement mobile à cause de la formation de complexe avec le chlore (dans les zone riche en Cl, Talabre) et avec la matière organique dissoute (dans les zones où s'infiltre l'eau de captage riche en matière organique, Carén). Une étude en laboratoire sur le fractionnement des isotopes stables de sulfure et d'oxygène des sulfates dans différents groupes de minéraux (sulfates hydrosolubles, sulfures de oxy-hydroxyde de Fe(III) faiblement ou fortement cristallins) a permis d'apporter une contribution à leur utilisation comme traceurs dans l'étude des processus géochimiques et de transport lors d'études environnementales. Les résultats montrent qu'une étude détaillée de la géochimie, des isotopes stables et de la minéralogie permet d'identifier les processus et les voies de contamination déjà pendant la période de dépôt des déchets miniers. Cette connaissance permet de planifier, dès le début de l'exploitation, des mesures adéquates pour réduire et contrôler l'impact sur l'environnement pendant la période de dépôts de déchets miniers et après la fermeture du site.
Resumo:
The Muchakinock Creek Watershed Project began in February of 2005 to treat upland soil erosion in the creek that has lead to a 303(d) impairment. The Mahaska SWCD is currently administering this cost-share program to promote terraces, basins and grade stabilization structures. The District is now seeking funding from WIRB to treat specific abandoned mine lands in the Muchakinock Creek Watershed. These areas contribute sediment to the creek at levels second only to agricultural lands as well as acid mine drainage from open pits mines that have been left to decay across the county. The WIRB funding would be used to compliment Federal Abandoned Mine Land (AML) funding in the reclamation of these areas.
Remediação de drenagem ácida de mina usando zeólitas sintetizadas a partir de cinzas leves de carvão
Resumo:
Zeolitic material was synthesized from coal fly ashes (baghouse filter fly ash and cyclone filter fly ash) by hydrothermal alkaline activation. The potential application of the zeolitic product for decontamination of waters from acid mine drainage was evaluated. The results showed that a dose of 30 g L-1 of zeolitic material allowed the water to reach acceptable quality levels after treatment. Both precipitation and cation-exchange processes accounted for the reduction in the pollutant concentration in the treated waters.
Resumo:
Acid drainage results from exposition of sulfides to the atmosphere. Arsenopyrite is a sulfide that releases arsenic (As) to the environment when oxidized. This work evaluated the As mobility in six sulfidic geomaterials from gold mining areas in Minas Gerais State, Brazil. Grained samples (<2 mm) were periodically leached with distilled water, during 70 days. Results suggested As sorption onto (hydr)oxides formed by oxidation of arsenopyrite. Low pH accelerated the acid generation, dissolving Fe oxihydroxides and releasing As. Presence of carbonates decreased oxidation rates and As release. On the other hand, lime added to a partially oxidized sample increased As mobilization.
Resumo:
Acid mine drainage generated from coal mine showed a pH of 3.2, high concentrations of SO4(2-), Al, Fe, Mn, Zn and minor As, Cd, Co, Cr, Cu, Ni and Pb. The major reduction in the concentration occurred for Al, As, Cr, Fe and Pb after the treatment with CaO. The evolution of these acid waters within the tributary stream showed decreasing concentration for all soluble constituents, except Al. This natural attenuation was controlled by pH (6.4 to 10.8) as a result of concurrent mixing with tributary stream and reaction with local bedrock that contains limestone. Aluminum increasing concentration during this evolution seems to be related to an input of Al-enriched waters due to the leaching of silicate minerals in alkaline conditions.
Resumo:
This study aimed the use of coal mining waste as a new adsorbent for H3O+ and removal of Al (III), Fe (III) and Mn (II) from acid mine drainage. Data from kinetic and equilibrium of the adsorption of H3O+ followed the pseudo second-order and Langmuir isotherm models. The maximum adsorption capacity of H3O+ was 316 mmol kg-1. The adsorbent removed 100% of Al (III), 100% of Fe (III) and 89% of Mn (II), suggesting its use as an alternative for the treatment of acid mine drainage.
Resumo:
The deterioration of surface waters is one of the most important issues in the environmental management of the European Union. Thus, the EU Water Framework Directive 2000/60/EC (WFD) requires “good ecological and chemical status” of surface waters by 2015 allowing only a slight departure from ecological reference conditions characterized by the biological communities typical for the conditions of minimal anthropogenic impact. The WFD requires the determination of ecological reference conditions and the present ecological status of surface waters. To meet this legislative demand, sedimentary diatom assemblages were used in these studies with various methods 1) to assess natural and human activity induced environmental changes, 2) to characterize background conditions 3) to evaluate the present ecological status and 4) to predict the future of the water bodies in the light of palaeolimnological data. As the WFD refers to all surface waters, both coastal and inland sites were included. Two long and two short sediment cores from the Archipelago Sea in the northern Baltic Sea were examined for their siliceous microfossils in order to assess (1) the Holocene palaeoenvironmental history and (2) the recent eutrophication of the area. The diatom record was divided into local diatom assemblage zones (LDAZ, long cores) and diatom assemblage zones (DAZ, short cores). Locally weighted weighted averaging regression and calibration (LWWA) was applied for the quantitative reconstruction of past TN concentrations (short cores). An age model for the long cores was constructed by using independent palaeomagnetic and AMS-14C methods. The short cores were dated using radiometric (210Pb, 226Ra and 137Cs) methods. The long cores date back to the early history of the Archipelago Sea, which was freshwater – no salinity increase referable to the brackish phase of the Yoldia Sea is recognized. The nutrient status of the lacustrine phase was slightly higher in the Archipelago Sea than in the Baltic Proper. Initial brackish-water influence is observed at 8 150 ±80 cal. BP (LDAZ4), but fully brackish conditions were established at 7 700 ±80 cal. BP (LDAZ5). The diatom assemblages indicate increasing salinity, warming climate and possible eutrophic conditions during the lacustrine to brackish-water transition. The decreasing abundance of Pseudosolenia calcar-avis (Schultze) Sundström and the increasing abundance of the ice-cover indicator species Pauliella taeniata (Grunow) Round and Basson indicate decreasing salinity and climatic cooling after ca. 5 000 cal. BP. Signs of eutrophication are visible in the most recent diatom assemblage zones of both short cores. Diatom-inferred total nitrogen (DI-TN) reconstructions partially fail to trace the actual measured total nitrogen concentrations especially from the late 1980s to the mid 1990s. This is most likely due to the dominating diatom species Pauliella taeniata, Thalassiosira levanderi Van Goor and Fragilariopsis cylindrus (Grunow) W. Krieger being more influenced by factors such as the length of the ice-season rather than nutrient concentrations. It is concluded that the diatom assemblages of the study sites are principally governed by climate fluctuations, with a slight influence of eutrophication visible in the most recent sediments. There are indications that global warming, with reduced ice cover, could impact the spring blooming diatom species composition in the Archipelago Sea. In addition, increased sediment accumulation in the early 90s coincides with the short ice-seasons suggesting that warming climate with decreasing ice-cover may increase sedimentation in the study area. The diverse diatom assemblages dominated by benthic species (54 %) in DAZ1 in the Käldö Fjärd core can be taken as background diatom assemblages for the Archipelago Sea. Since then turbidity has increased and the diatom assemblages have been dominated by planktonic diatoms from around the mid 1800s onwards. The reconstructed reference conditions for the total nitrogen concentrations fluctuate around 400 μg l-1. Altogether two short sediment cores and eight short cores for top-bottom analysis were retrieved from Lake Orijärvi and Lake Määrjärvi to assess the impact of the acid mine drainage (AMD) derived metals from the Orijärvi mine tailings on the diatom communities of the lakes. The Cu (Pb, Zn) mine of Orijärvi (1757 – 1956) was the first one in Finland where flotation techniques (1911 – 1955) were used to enrich ore and large quantities of tailings were produced. The AMD derived metal impact to the lakes was found to be among the heaviest thus far recorded in Finland. Concentrations of Cu, Pb and Zn in Lake Orijärvi sediments are two to three orders of magnitude higher than background values. The metal inputs have affected Lake Orijärvi and Lake Määrjärvi diatom communities at the community levels through shifts in dominant taxa (both lakes) and at the individual level through alteration in frustule morphology (Lake Orijärvi). At present, lake water still has elevated heavy metal levels, indicating that the impact from the tailings area continues to affect both lakes. Lake Orijärvi diatom assemblages are completely dominated by benthic species and are lacking planktonic diatoms. In Lake Määrjärvi the proportion of benthic and tychoplanktonic diatoms has increased and the planktonic taxa have decreased in abundance. Achnanthidium minutissimum Kützing and Brachysira vitrea (Grun.) R. Ross in Hartley were the most tolerant species to increased metal concentrations. Planktonic diatoms are more sensitive to metal contamination than benthic taxa, especially species in the genus Cyclotella (Kützing) Brébisson. The ecological reference conditions assessed in this study for Lake Orijärvi and Lake Määrjärvi comprise diverse planktonic and benthic communitites typical of circumneutral oligotrophic lakes, where the planktonic diatoms belonging to genera Cyclotella , Aulacoseira Thwaites, Tabellaria Ehrenberg and Asterionella Hassall dominate in relative abundances up to ca. 70%. The benthic communities are more diverse than the planktonic consisting of diatoms belonging to the genera Achnanthes Bory, Fragilaria Lyngbye and Navicula St. Vincent. This study clearly demonstrates that palaeolimnological methods, especially diatom analysis, provide a powerful tool for the EU Water Frame Work Directive for defining reference conditions, natural variability and current status of surface waters. The top/bottom approach is a very useful tool in larger-scale studies needed for management purposes. This “before and after” type of sediment sampling method can provide a very time and cost effective assessment of ecological reference conditions of surface waters.
Resumo:
Depletion of high grade mineral resources, tightening of environmental regulations and the environmental impact of acid mine drainage caused by sulfidic minerals continuously increase the interest in processing tailings and other mine waste. Treating waste requires additional capital and operational input, but the decrease in size and need of tailings ponds and permits decrease the overall costs. Treatment and utilization of the tailings could also bring added revenue by the recovery of valuables. Leaching of metal sulfides is very demanding and time consuming and hence process conditions need to be carefully optimized. The leaching of sulfides is affected by for example the choice of leaching agent, its concentration and temperature, pH, the redox potential, pressure, pulp density and particle size distribution. With reference to the mine case study the leaching of nickel and copper sulfides, especially the primary minerals pentlandite and chalcopyrite were investigated. Leaching behavior and recoveries for nickel, copper and iron were found out by sulfuric and citric acid leaching experiments using tailings samples of high and low sulfur content. Moderate recoveries were obtained and citric acid seemed more attractive. Increase in temperature and decrease in pulp density had positive effect on the recovery and pH was also proven to have a significant effect on the recovery of valuables. The rate determining step was determined through kinetic modeling in case of all valuables separately. Leaching was controlled by diffusion. The investigated multimetal tailing showed moderate potential in recovering of metal valuables from low grade tailing deposits. The process conditions should however be further optimized.
Resumo:
Työn tarkoituksena oli kuparin ja hapon erottaminen toisistaan malliaineliuoksesta membraanitekniikalla. Kaivannaisteollisuudessa happoja käytetään metalleiden liuottamiseen. Lisäksi happamia jätevesiä syntyy sulfidikaivoksissa, sadeveden liuottaessa metalleja. Raskasmetallit ovat erittäin myrkyllistä vesieliöille. Työn tavoitteena oli saada happo ja metalli hyödynnettävään muotoon. Työn kokeellisessa osassa vertailtiin kahta polymeeristä ja keraamista membraania hapon ja metallin erotuksessa. Mittauksissa käytetyt membraanit olivat: AMS Technologies A-3012 ja A-3014 sekä Inopor ® Type SKR. Syöttöliuos sisälsi kuparisulfaattia ja rikkihappoa. Suodatukset tehtiin 30 ºC lämpötilassa useissa paineissa ja pH-arvoissa. Polymeeristen membraanien suodatusnäytteistä saadut retentiot kuparille olivat vastaavia aikaisempien tutkimusten tuloksien kanssa. A-3012 kalvon kuparin retentio oli 95 % ja A-3014 kalvolle kuparin retentio oli 90 %. Lisäksi mittausten korkeimmissa pH-arvoissa (2,9-2,3) happo konsentroitui permeaattiin. Polymeerisillä membraaneilla ei ollut merkkejä kalvon likaantumisesta tai hajoamisesta. Keraamisella membraanilla mitatut tulokset eivät olleet vastaavia aikaisempien tutkimusten tuloksien kanssa. Kuparin retentio olivat 2 ja 20 prosentin välillä, eikä liuoksen pH eronnut syötön ja permeaatin välillä. Tulosten perusteella molemmat tutkitut polymeeriset membraanit soveltuvat kuparin erottamiseen happamasta liuoksesta. Mittauksissa käytetty keraaminen membraani ei sovellu tähän tehtävään.
Resumo:
The aim of this work is to study the hydrochemical variations during flood events in the Rio Tinto, SW Spain. Three separate rainfall/flood events were monitored in October 2004 following the dry season. In general, concentrations markedly increased following the first event (Fe from 99 to 1130 mg/L; Q(max) = 0.78 m(3)/s) while dissolved loads peaked in the second event (Fe = 7.5 kg/s, Cu = 0.83 kg/s, Zn = 0.82 kg/s; Q(max) = 77 m(3)/s) and discharge in the third event (Q(max) = 127 m(3)/s). This pattern reflects a progressive depletion of metals and sulphate stored in the dry summer as soluble evaporitic salt minerals and concentrated pore fluids, with dilution by freshwater becoming increasingly dominant as the month progressed. Variations in relative concentrations were attributed to oxyhydroxysulphate Fe precipitation, to relative changes in the sources of acid mine drainage (e.g. salt minerals, mine tunnels, spoil heaps etc.) and to differences in the rainfall distributions along the catchment. The contaminant load carried by the river during October 2004 was enormous, totalling some 770 t of Fe, 420 t of Al, 100 t of Cu, 100 t of Zn and 71 t of Mn. This represents the largest recorded example of this flush-out process in an acid mine drainage setting. Approximately 1000 times more water and 1408 200 times more dissolved elements were carried by the river during October 2004 than during the dry, low-flow conditions of September 2004, highlighting the key role of flood Events in the annual pollutant transport budget of semi-arid and and systems and the need to monitor these events in detail in order to accurately quantify pollutant transport. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The effectiveness of remediation of the highly acidic and transition metal polluted mine water discharge from the Wheal Jane Mine by the Wheal Jane Passive Treatment Plant is described. The success of the remediation required that all the system components work as predicted. The study shows considerable success in the removal of key toxic metals and clearly demonstrates the potential for natural attenuation of acid mine drainage, particularly iron oxidation, by microbial populations. The Wheal Jane Passive Treatment Plant provides the only experimental facility of its kind. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A mineração de carvão em lavra a céu aberto provoca a mistura dos materiais sobrejacentes ao carvão e que são, posteriormente, utilizados no preenchimento das cavas mineradas. O processo de construção dos solos e a mistura podem ocasionar problemas ambientais pelas alterações quimicas e fisicas provocadas nos solos construidos. A fimde comparar solos construidos de diferentes idades, caracterizou-se a coluna geológica. o ~Io natural originale solos construidos de 2 anos e de 24 anos da mina de carvão Boa Vista, no Municípiode Minas do Leão, RS. A descrição morfológicado perfil do solo e as análises quimicas e fisicas demonstram que os solos construidos apresentam sérias limitações físicas, impedindo o desenvolvimento normal da vegetação. Ademais. diferenças quimicas entre os perfis de diferentes idades originam-se principalmente da utilização de materiais geológicos e processos de construção distintos, do que pelos processos pedogenéticos. Quanto à evolução temporal dos solos construidos, observou-se que está fortemente caracterizada pela intemperização acido-sulfatada, intensificando-se na sub-área mais antiga. O potencial de acidificação e o potencial de neutralização determínados na coluna geológica indicam a existência de camadas com alto potencial gerador de Drenagem Ácida de Minas, recomendando-se o cuidado na deposição final destas camadas. Os resultados deste estudo indicam que as propriedades químicas e fisicas determinadas nos solos construidos servem como indicadores para o monitoramentode áreas construídas,visando a prevenção de danos ambientais.
Resumo:
Contaminant driven genetic erosion reported through the inspection of selectable traits can be underestimated using neutral markers. This divergence was previously reported in the aquatic system of an abandoned pyrite mine. The most sensitive genotypes of the microcrustacean cladoceran Daphnia longispina were found to be lacking in the impacted reservoir near the entrance of the metal rich acid mine drainage (AMD). Since that divergence could be, at least partially, accounted for by mutagenicity and genotoxicity of the AMD, the present study aimed at providing such a characterization. The Allium cepa chromosomal aberration assay, using root meristematic cells, was carried out, by exposing seeds to 100, 10, 1, and 0.1 % of the local AMD. Chromosomal aberrations, cell division phases and cell death were quantified after the AMD exposure and after 24 and 48 h recovery periods. The AMD revealed to be mutagenic and genotoxic, even after diluting it to 1 and 0.1 %. Dilutions within this range were previously found to be below the lethality threshold and to elicit sublethal effects on reproduction of locally collected D. longispina clonal lineages Significant mutagenic effects (micronuclei and chromosomal breaks) were also found at 0.1 % AMD, supporting that exposure may induce permanent genetic alterations. Recovery tests showed that AMD genotoxic effects persisted after the exposure. © 2013 Springer Science+Business Media New York.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)