381 resultados para ATR
Resumo:
This paper presents the results of experiments carried out in a laboratory-scale photochemical reactor on the photodegradation of different polymers in aqueous solutions by the photo-Fenton process. Solutions of three polymers, polyethyleneglicol (PEG), polyacrylamide (PAM), and polyvinylpyrrolidone(PVP), were tested under different. conditions. The reaction progress was evaluated by sampling and analyzing the total organic carbon concentration in solution (TOC) along the reaction time. The behavior of the different polymers is discussed, based oil the evolution of the TOC-time curves. Under specific reaction conditions, the formation and coalescence of solid particles was Visually observed. Solids formation occurred simultaneously to a sharp decrease in the TOC of the liquid phase. This may be favorable for the treatment of industrial wastewater containing polymers, since the photodegradation process can be Coupled with solid separation systems. which may reduce the treatment cost. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A new method to prepare porous silk fibroin (SF) membranes without dialysis proposed. Silk fibers were degummed to remove sericin and the resultant fibroin was dissolved in a CaCl(2)-CH(3)CH(2)OH-H(2)O ternary solvent. Rather than undergoing dialysis, a fibroin salty solution was diluted in water and then submitted to a mechanical agitation that led to a phase separation through foam formation on the solution surface. This foam was continually collected and then compacted between plates to remove the excess of water. The membranes presented large pores with diameters of greater than 100 pm (as shown by scanning electron microscopy - SEM), porosity of 68% and water content of 91% w/w. X-ray diffraction (XRD) and infrared spectroscopy (FTIR-ATR) indicated that the membranes present SF in a beta-sheet structure even before the ethanol treatment. A typical elastic deformation profile and degradation under temperature were observed using calorimetric analysis (DSC), thermal gravimetric analysis (TGA) and mechanical tests. As indicated by the in vitro cytotoxicity tests, these membranes present potential for use as scaffolds. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 114: 617-623, 2009
Resumo:
Mitochondrial membrane carriers containing proline and cysteine, such as adenine nucleotide translocase (ANT), are potential targets of cyclophilin D (CyP-D) and potential Ca(2+)-induced permeability transition pore (PTP) components or regulators; CyP-D, a mitochondrial peptidyl-prolyl cis-trans isomerase, is the probable target of the PTP inhibitor cyclosporine A (CsA). In the present study, the impact of proline isomerization (from trans to cis) on the mitochondrial membrane carriers containing proline and cysteine was addressed using ANT as model. For this purpose, two different approaches were used: (i) Molecular dynamic (MD) analysis of ANT-Cys(56) relative mobility and (ii) light scattering techniques employing rat liver isolated mitochondria to assess both Ca(2+)-induced ANT conformational change and mitochondrial swelling. ANT-Pro(61) isomerization increased ANT-Cys(56) relative mobility and, moreover, desensitized ANT to the prevention of this effect by ADP. In addition, Ca(2+) induced ANT ""c"" conformation and opened PTP; while the first effect was fully inhibited, the second was only attenuated by CsA or ADP. Atractyloside (ATR), in turn, stabilized Ca(2+)-induced ANT ""c"" conformation, rendering the ANT conformational change and PTP opening less sensitive to the inhibition by CsA or ADP. These results suggest that Ca(2+) induces the ANT ""c"" conformation, apparently associated with PTP opening, but requires the CyP-D peptidyl-prolyl cis-trans isomerase activity for sustaining both effects.
Resumo:
Nucleotide excision repair (NER) eliminates helix-distorting DNA base lesions. Seven XP-deficient genetic complementation groups (XPA to XPG) have already been identified in mammals, and their corresponding genes have been cloned. Hereditary defects in NER are associated with several diseases, including xeroderma pigmentosum (XP). UV-DDB (XPE) is formed by two associated subunits, DDB1 and DDB2. UV-DDB was identified biochemically as a protein factor that exhibits very strong and specific binding to ultraviolet (UV)-treated DNA. As a preliminary step to characterize the components of the NER in the filamentous fungus Aspergillus nidulans, here we identified a putative DDB1 homologue, DdbA. Deletion and expression analysis indicated that A. nidulans ddbA gene is involved in the DNA damage response, more specifically in the UV light response and 4-nitroquinoline oxide (4-NQO) sensitivity. Furthermore, the Delta ddbA strain cannot self-cross and expression analysis showed that ddbA can be induced by oxidative stress and is developmentally regulated in both asexual and sexual processes. The Delta ddbA mutation can genetically interact with uvsB(ATR), atmA(ATM), nkuA(KU70), H2AX-S129A (a replacement of the conserved serine in the C-terminal of H2AX with alanine), and cshB (a mutation in CSB Cockayne`s syndrome protein involved in the transcription-coupled repair subpathway of NER) mutations. Finally, to determine the DdbA cellular localization, we constructed a GFP:DdbA strain. In the presence and absence of DNA damage, DdbA was mostly detected in the nuclei, indicating that DdbA localizes to nuclei and its cellular localization is not affected by the cellular response to DNA damage induced by 4-NQO and UV light.
Resumo:
Ataxia telangiectasia mutated (ATM) is a phosphatidyl-3-kinase-related protein kinase that functions as a central regulator of the DNA damage response in eukaryotic cells. In humans, mutations in ATM cause the devastating neurodegenerative disease ataxia telangiectasia. Previously, we characterized the homolog of ATM (AtmA) in the filamentous fungus Aspergillus nidulans. In addition to its expected role in the DNA damage response, we found that AtmA is also required for polarized hyphal growth. Here, we extended these studies by investigating which components of the DNA damage response pathway are interacting with AtmA. The AtmA(ATM) loss of function caused synthetic lethality when combined with mutation in UvsB(ATR). Our results suggest that AtmA and UvsB are interacting and they are probably partially redundant in terms of DNA damage sensing and/or repairing and polar growth. We identified and inactivated A. nidulans chkA(CHK1) and chkB(CHK2) genes. These genes are also redundantly involved in A. nidulans DNA damage response. We constructed several combinations of double mutants for Delta atmA, Delta uvsB, Delta chkA, and Delta chkB. We observed a complex genetic relationship with these mutations during the DNA replication checkpoint and DNA damage response. Finally, we observed epistatic and synergistic interactions between AtmA, and bimE(APCI), ankA(WEE1) and the cdc2-related kinase npkA, at S-phase checkpoint and in response to DNA-damaging agents.
Resumo:
Bovine pericardium, for cardiac valve fabrication, was coated with either chitosan or silk fibroin film. In vitro calcification tests of coated and non coated bovine pericardium were performed in simulated body fluid solution in order to investigate potential alternatives to minimize calcification on implanted heart valves. Complementary, morphology was assessed by scanning electron microscopy - SEM; X-ray diffraction (XRD) and infrared spectroscopy (FTIR-ATR) were performed for structural characterization of coatings and biocompatibility of chitosan. Silk fibroin films were assayed by in vitro cytotoxicity and endothelial cell growth tests. Bovine pericardium coated with silk fibroin or chitosan did not present calcification during in vitro calcification tests, indicating that these biopolymeric coatings do not induce bovine pericardium calcification. Chitosan and silk fibroin films were characterized as non cytotoxic and silk fibroin films presented high affinity to endothelial cells. The results indicate that bovine pericardium coated with silk fibroin is a potential candidate for cardiac valve fabrication, since the affinity of silk fibroin to endothelial cells can be explored to induce the tissue endothelization and therefore, increase valve durability by increasing their mechanical resistance and protecting them against calcification. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Objective. This study evaluated the degree of conversion (DC), maximum rate of cure (R(p)(max)), and polymerization stress (PS) developed by an experimental dental composite subjected to different irradiant energies (3,6,12, 24, or 48J/cm(2)) under constant irradiance (500 mw/cm(2)). Methods. DC and R(p)(max) were monitored for 10 min on the bottom surface of 2-mm thick disks and on 150-mu m thick films (representing the top of the specimen) using ATR-FTIR. PS was monitored for 10 min in 2-mm thick disks bonded to two glass rods (O = 5 mm) attached to a universal testing machine. One-way ANOVA/Tukey tests were used and differences in DC and R(p)(max) between top and bottom surfaces were examined using Student`s t-test. Statistical testing was performed at a pre-set alpha of 0.05. Results. For a given surface, DC showed differences among all groups, except at the top between 24 and 48 J/cm(2). R(p)(max) was similar among all groups at the same surface and statistically higher at the top surface. PS also showed significant differences among all groups. Data for 48 J/cm(2) were not obtained due to specimen failure at the glass/composite interface. Significance. Increases in irradiant exposure led to significant increases in DC and PS, but had no effect on R(p)(max) (c) 2008 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. To evaluate the influence of different tertiary amines on degree of conversion (DC), shrinkage-strain, shrinkage-strain rate, Knoop microhardness, and color and transmittance stabilities of experimental resins containing BisGMA/TEGDMA (3: 1 wt), 0.25wt% camphorquinone, 1wt% amine (DMAEMA, CEMA, DMPT, DEPT or DABE). Different light-curing protocols were also evaluated. Methods. DC was evaluated with FTIR-ATR and shrinkage-strain with the bonded-disk method. Shrinkage-strain-rate data were obtained from numerical differentiation of shrinkage-strain data with respect to time. Color stability and transmittance were evaluated after different periods of artificial aging, according to ISO 7491: 2000. Results were evaluated with ANOVA, Tukey, and Dunnett`s T3 tests (alpha = 0.05). Results. Studied properties were influenced by amines. DC and shrinkage-strain were maximum at the sequence: CQ < DEPT < DMPT <= CEMA approximate to DABE < DMAEMA. Both DC and shrinkage were also influenced by the curing protocol, with positive correlations between DC and shrinkage-strain and DC and shrinkage-strain rate. Materials generally decreased in L* and increased in b*. The strong exception was the resin containing DMAEMA that did not show dark and yellow shifts. Color varied in the sequence: DMAEMA < DEPT < DMPT < CEMA < DABE. Transmittance varied in the sequence: DEPT approximate to DABE < DABE approximate to DMPT approximate to CEMA < DMPT approximate to CEMA approximate to DMAEMA, being more evident at the wavelength of 400 nm. No correlations between DC and optical properties were observed. Significance. The resin containing DMAEMA showed higher DC, shrinkage-strain, shrinkage-strain rate, and microhardness, in addition to better optical properties. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Recent studies have provided evidence that breast cancer susceptibility gene products (Brca1 and Brca2) suppress cancer, at least in part, by participating in DNA damage signaling and DNA repair. Brca1 is hyperphosphorylated in response to DNA damage and co-localizes with Rad51, a protein involved in homologous-recombination, and Nbs1·Mre11·Rad50, a complex required for both homologous-recombination and nonhomologous end joining repair of damaged DNA. Here, we report that there is a qualitative difference in the phosphorylation states of Brca1 between ionizing radiation (IR) and UV radiation. Brca1 is phosphorylated at Ser-1423 and Ser-1524 after IR and UV; however, Ser-1387 is specifically phosphorylated after IR, and Ser-1457 is predominantly phosphorylated after UV. These results suggest that different types of DNA-damaging agents might signal to Brca1 in different ways. We also provide evidence that the rapid phosphorylation of Brca1 at Ser-1423 and Ser-1524 after IR (but not after UV) is largely ataxia telangiectasia mutated (ATM) kinase-dependent. The overexpression of catalytically inactive ATM and Rad3 related (ATR) kinase inhibited the UV-induced phosphorylation of Brca1 at these sites, indicating that ATR controls Brca1 phosphorylation in vivo after the exposure of cells to UV light. Moreover, ATR associates with Brca1; ATR and Brca1 foci co-localize both in cells synchronized in S phase and after exposure of cells to DNA-damaging agents. ATR can itself phosphorylate the region of Brca1 phosphorylated by ATM (Ser-Gln cluster in the C terminus of Brca1, amino acids 1241-1530). However, there are additional uncharacterized ATR phosphorylation site(s) between residues 521 and 757 of Brca1. Taken together, our results support a model in which ATM and ATR act in parallel but somewhat overlapping pathways of DNA damage signaling but respond primarily to different types of DNA lesion.
Resumo:
There is evidence that ATM plays a wider role in intracellular signalling in addition to DNA damage recognition and cell cycle control, In this report we show that activation of the EGF receptor is defective in ataxia-telangiectasia (A-T) cells and that sustained stimulation of cells with EGF downregulates ATM protein in control cells but not in A-T cells expressing mutant protein, Concomitant with the downregulation of ATM, DNA-binding activity of the transcription factor Spl decreased in controls after EGF treatment but increased from a lower basal level in A-T cells to that in untreated control cells, Mutation in two Spl consensus sequences in the ATM promoter reduced markedly the capacity of the promoter to support luciferase activity in a reporter assay. Overexpression of anti-sense ATM cDNA in control cells decreased the;basal level of Spl, which in turn was increased by subsequent treatment of cells with EGF, similar to that observed in,A-T cells. On the other hand full-length ATM cDNA increased the basal level of Spl binding in A-T cells, and in response to EGF Spl binding decreased, confirming that this is an ATR I-dependent process. Contrary to that observed in control cells there was no radiation-induced change in ATM protein in EGF-treated A-T cells and likewise no alteration in Spl binding activity. The results demonstrate that EGF-induced downregulation of ATM (mutant) protein in A-T cells is defective and this appears to be due to less efficient EGFR activation and abnormal Spl regulation.
Resumo:
Recent studies have provided evidence that breast cancer susceptibility gene products (Brca1 and Brca2) suppress cancer, at least in part, by participating in DNA damage signaling and DNA repair. Brca1 is hyperphosphorylated in response to DNA damage and co-localizes with Rad51, a protein involved in homologous-recombination, and Nbs1.Mre11.Rad50, a complex required for both homologous-recombination and nonhomologous end joining repair of damaged DNA. Here, we report that there is a qualitative difference in the phosphorylation states of Brca1 between ionizing radiation (IR) and UV radiation. Brca1 is phosphorylated at Ser-1423 and Ser-1524 after IR and W; however, Ser-1387 is specifically phosphorylated after IR, and Ser-1457 is predominantly phosphorylated after W. These results suggest that different types of DNA-damaging agents might signal to Brca1 in different ways. We also provide evidence that the rapid phosphorylation of Brca1 at Ser-1423 and Ser-1524 after IR (but not after W) is largely ataxia telangiectasia mutated (ATM) kinase-dependent. The overexpression of catalytically inactive ATM and Rad3 related (ATR) kinase inhibited the UV-induced phosphorylation of Brca1 at these sites, indicating that ATR controls Brca1 phosphorylation in vivo after the exposure of cells to UV light. Moreover, ATR associates with Brca1; ATR and Brca1 foci co-localize both in cells synchronized in S phase and after exposure of cells to DNA-damaging agents. ATR can itself phosphorylate the region of Brca1 phosphorylated by ATM (Ser-Gln cluster in the C terminus of Brca1, amino acids 1241-1530), However, there are additional uncharacterized ATR phosphorylation site(s) between residues 521 and 757 of Brca1, Taken together, our results support a model in which ATM and ATR act in parallel but somewhat overlapping pathways of DNA damage signaling but respond primarily to different types of DNA lesion.
Resumo:
A study has been made to investigate the radiation grafting of styrene onto poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA) substrates, using the simultaneous irradiation method. Two PFA polymers of different comonomer perfluoropropyl vinyl ether (PPVE) content and degree of crystallinity were used. Effects of grafting conditions such as monomer concentrations, type of solvent, dose rate, and irradiation dose on the grafting yield were investigated. Of the six different solvents used, the most efficient in terms of increasing grafting yield were dichloromethane, benzene, and methanol. The degree of grafting increased with increasing radiation dose up to 500 kGy, stabilizing above this dose. However, the grafting yield decreased with an increase in the dose rate. The grafting of styrene onto the PFA substrates was confirmed by FTIR-ATR and micro-Raman spectroscopy, The increase in the overall grafting yield was accompanied by a proportional increase in the penetration depth of the grafts into the substrate.
Resumo:
We compare Bayesian methodology utilizing free-ware BUGS (Bayesian Inference Using Gibbs Sampling) with the traditional structural equation modelling approach based on another free-ware package, Mx. Dichotomous and ordinal (three category) twin data were simulated according to different additive genetic and common environment models for phenotypic variation. Practical issues are discussed in using Gibbs sampling as implemented by BUGS to fit subject-specific Bayesian generalized linear models, where the components of variation may be estimated directly. The simulation study (based on 2000 twin pairs) indicated that there is a consistent advantage in using the Bayesian method to detect a correct model under certain specifications of additive genetics and common environmental effects. For binary data, both methods had difficulty in detecting the correct model when the additive genetic effect was low (between 10 and 20%) or of moderate range (between 20 and 40%). Furthermore, neither method could adequately detect a correct model that included a modest common environmental effect (20%) even when the additive genetic effect was large (50%). Power was significantly improved with ordinal data for most scenarios, except for the case of low heritability under a true ACE model. We illustrate and compare both methods using data from 1239 twin pairs over the age of 50 years, who were registered with the Australian National Health and Medical Research Council Twin Registry (ATR) and presented symptoms associated with osteoarthritis occurring in joints of the hand.
Resumo:
In mammals, the ATM (ataxia-telangiectasia-mutated) and ATR (ATM and Rad3-related) protein kinases function as critical regulators of the cellular DNA damage response. The checkpoint functions of ATR and ATM are mediated, in part, by a pair of checkpoint effector kinases termed Chk1 and Chk2. In mammalian cells, evidence has been presented that Chk1 is devoted to the ATR signaling pathway and is modified by ATR in response to replication inhibition and UV-induced damage, whereas Chk2 functions primarily through ATM in response to ionizing radiation (IR), suggesting that Chk2 and Chk1 might have evolved to channel the DNA damage signal from ATM and ATR, respectively. We demonstrate here that the ATR-Chk1 and ATM-Chk2 pathways are not parallel branches of the DNA damage response pathway but instead show a high degree of cross-talk and connectivity. ATM does in fact signal to Chk1 in response to IR. Phosphorylation of Chk1 on Ser-317 in response to IR is ATM-dependent. We also show that functional NBS1 is required for phosphorylation of Chk1, indicating that NES1 might facilitate the access of Chk1 to ATM at the sites of DNA damage. Abrogation of Chk1 expression by RNA interference resulted in defects in IR-induced S and G2/M phase checkpoints; however, the overexpression of phosphorylation site mutant (S317A, S345A or S317A/S345A double mutant) Chk1 failed to interfere with these checkpoints. Surprisingly, the kinase-dead Chk1 (D130A) also failed to abrogate the S and G2 checkpoint through any obvious dominant negative effect toward endogenous Chk1. Therefore, further studies will be required to assess the contribution made by phosphorylation events to Chk1 regulation. Overall, the data presented in the study challenge the model in which Chk1 only functions downstream from ATR and indicate that ATM does signal to Chk1. In addition, this study also demonstrates that Chk1 is essential for IR-induced inhibition of DNA synthesis and the G2/M checkpoint.
Resumo:
Ataxia-telangiectasia Mutated (ATM), mutated in the human disorder ataxia-telangiectasia, is rapidly activated by DNA double strand breaks. The mechanism of activation remains unresolved, and it is uncertain whether autophosphorylation contributes to activation. We describe an in vitro immunoprecipitation system demonstrating activation of ATM kinase from unirradiated extracts by preincubation with ATP. Activation is both time- and ATP concentration-dependent, other nucleotides fail to activate ATM, and DNA is not required. ATP activation is specific for ATM since it is not observed with kinase-dead ATM, it requires Mn2+, and it is inhibited by wortmannin. Exposure of activated ATM to phosphatase abrogates activity, and repeat cycles of ATP and phosphatase treatment reveal a requirement for autophosphorylation in the activation process. Phosphopeptide mapping revealed similarities between the patterns of autophosphorylation for irradiated and ATP-treated ATM. Caffeine inhibited ATM kinase activity for substrates but did not interfere with ATM autophosphorylation. ATP failed to activate either A-T and rad3-related protein (ATR) or DNA-dependent protein kinase under these conditions, supporting the specificity for ATM. These data demonstrate that ATP can specifically induce activation of ATM by a mechanism involving autophosphorylation. The relationship of this activation to DNA damage activation remains unclear but represents a useful model for understanding in vivo activation.