1000 resultados para ATOMIC QUANTUM FLUID


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluate the quantum discord dynamics of two qubits in independent and common non-Markovian environments. We compare the dynamics of entanglement with that of quantum discord. For independent reservoirs the quantum discord vanishes only at discrete instants whereas the entanglement can disappear during a finite time interval. For a common reservoir, quantum discord and entanglement can behave very differently with sudden birth of the former but not of the latter. Furthermore, in this case the quantum discord dynamics presents sudden changes in the derivative of its time evolution which is evidenced by the presence of kinks in its behavior at discrete instants of time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The calculation of quantum dynamics is currently a central issue in theoretical physics, with diverse applications ranging from ultracold atomic Bose-Einstein condensates to condensed matter, biology, and even astrophysics. Here we demonstrate a conceptually simple method of determining the regime of validity of stochastic simulations of unitary quantum dynamics by employing a time-reversal test. We apply this test to a simulation of the evolution of a quantum anharmonic oscillator with up to 6.022×1023 (Avogadro's number) of particles. This system is realizable as a Bose-Einstein condensate in an optical lattice, for which the time-reversal procedure could be implemented experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the dynamics of a dilute, trapped Bose-condensed atomic gas coupled to a diatomic molecular Bose gas by coherent Raman transitions. This system is shown to result in a new type of “superchemistry,” in which giant collective oscillations between the atomic and the molecular gas can occur. The phenomenon is caused by stimulated emission of bosonic atoms or molecules into their condensate phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present experimental results for the dynamics of cold atoms in a far detuned amplitude-modulated optical standing wave. Phase-space resonances constitute distinct peaks in the atomic momentum distribution containing up to 65% of all atoms resulting from a mixed quantum chaotic phase space. We characterize the atomic behavior in classical and quantum regimes and we present the applicable quantum and classical theory, which we have developed and refined. We show experimental proof that the size and the position of the resonances in phase space can be controlled by varying several parameters, such as the modulation frequency, the scaled well depth, the modulation amplitude, and the scaled Planck’s constant of the system. We have found a surprising stability against amplitude noise. We present methods to accurately control the momentum of an ensemble of atoms using these phase-space resonances which could be used for efficient phase-space state preparation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The process of stimulated Raman adiabatic passage (STIRAP) provides a possible route for the generation of a coherent molecular Bose-Einstein condensate (BEC) from an atomic BEC. We analyze this process in a three-dimensional mean-field theory, including atom-atom interactions and nonresonant intermediate levels. We find that the process is feasible, but at larger Rabi frequencies than anticipated from a crude single-mode lossless analysis, due to two-photon dephasing caused by the atomic interactions. We then identify optimal strategies in STIRAP allowing one to maintain high conversion efficiencies with smaller Rabi frequencies and under experimentally less demanding conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quantum trajectories method is illustrated for the resonance fluorescence of a two-level atom driven by a multichromatic field. We discuss the method for the time evolution of the fluorescence intensity in the presence of bichromatic and trichromatic driving fields. We consider the special case wherein one multichromatic field component is strong and resonant with the atomic transition whereas the other components are much weaker and arbitrarily detuned from the atomic resonance. We find that the phase-dependent modulations of the Rabi oscillations, recently observed experimentally [Q. Wu, D. J. Gauthier, and T. W. Mossberg, Phys. Rev. A 49, R1519 (1994)] for the special case when the weaker component of a bichromatic driving field is detuned from the atomic resonance by the strong-field Rabi frequency, appear also for detunings close to the subharmonics of the Rabi frequency. Furthermore, we show that for the atom initially prepared in one of the dressed states of the strong field component the modulations are not sensitive to the phase. We extend the calculations to the case of a trichromatic driving field and find that apart from the modulations of the amplitude there is a modulation of the frequency of the Rabi oscillations. Moreover, the time evolution of the fluorescence intensity depends on the phase regardless of the initial conditions and a phase-dependent suppression of the Rabi oscillations can be observed when the sideband fields are tuned to the subharmonics of the strong-field Rabi frequency. [S1050-2947(98)03501-X].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show how an initially prepared quantum state of a radiation mode in a cavity can be preserved for a long time using a feedback scheme based on the injection of appropriately prepared atoms. We present a feedback scheme both for optical cavities, which can be continuously monitored by a photodetector, and for microwave cavities, which can be monitored only indirectly via the detection of atoms that have interacted with the cavity field. We also discuss the possibility of applying these methods for decoherence control in quantum information processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the quantum field theory of two bosonic fields interacting via both parametric (cubic) and quartic couplings. In the case of photonic fields in a nonlinear optical medium, this corresponds to the process of second-harmonic generation (via chi((2)) nonlinearity) modified by the chi((3)) nonlinearity. The quantum solitons or energy eigenstates (bound-state solutions) are obtained exactly in the simplest case of two-particle binding, in one, two, and three space dimensions. We also investigate three-particle binding in one space dimension. The results indicate that the exact quantum solitons of this field theory have a singular, pointlike structure in two and three dimensions-even though the corresponding classical theory is nonsingular. To estimate the physically accessible radii and binding energies of the bound states, we impose a momentum cutoff on the nonlinear couplings. In the case of nonlinear optical interactions, the resulting radii and binding energies of these photonic particlelike excitations in highly nonlinear parametric media appear to be close to physically observable values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the parametric quantum field theory involving cubic and quartic couplings of two bosonic fields. This is exactly soluble for the two-particle energy eigenstates (or quantum solitons) in one, two, and three space dimensions. We estimate the binding energies and corresponding radii in the case of photonic fields in nonlinear optical materials, and Bose-Einstein condensates. [S1050-2947(98)51110-9].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce the study of dynamical quantum noise in Bose-Einstein condensates through numerical simulation of stochastic partial differential equations obtained using phase-space representations. We derive evolution equations for a single trapped condensate in both the positive-P and Wigner representations and perform simulations to compare the predictions of the two methods. The positive-P approach is found to be highly susceptible to the stability problems that have been observed in other strongly nonlinear, weakly damped systems. Using the Wigner representation, we examine the evolution of several quantities of interest using from a variety of choices of initial stare for the condensate and compare results to those for single-mode models. [S1050-2947(98)06612-8].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a new version of the density-matrix renormalization group we determine the phase diagram of a model of an antiferromagnetic Heisenberg spin chain where the spins interact with quantum phonons. A quantum phase transition from a gapless spin-fluid state to a gapped dimerized phase occurs at a nonzero value of the spin-phonon coupling. The transition is in the same universality class as that of a frustrated spin chain, to which the model maps in the diabatic limit. We argue that realistic modeling of known spin-Peierls materials should include the effects of quantum phonons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we investigate the quantum and classical dynamics of a single trapped ion subject to nonlinear kicks derived from a periodic sequence of Gaussian laser pulses. We show that the classical system exhibits: diffusive growth in the energy, or heating,'' while quantum mechanics suppresses this heating. This system may be realized in current single trapped-ion experiments with the addition of near-field optics to introduce tightly focused laser pulses into the trap.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the quantum theory of three fields interacting via parametric and repulsive quartic couplings. This can be applied to treat photonic chi((2)) and chi((3)) interactions, and interactions in atomic Bose-Einstein condensates or quantum Fermi gases, describing coherent molecule formation together with a-wave scattering. The simplest two-particle quantum solitons or bound-state solutions of the idealized Hamiltonian, without a momentum cutoff, are obtained exactly. They have a pointlike structure in two and three dimensions-even though the corresponding classical theory is nonsingular. We show that the solutions can be regularized with a momentum cutoff. The parametric quantum solitons have much more realistic length scales and binding energies than chi((3)) quantum solitons, and the resulting effects could potentially be experimentally tested in highly nonlinear optical parametric media or interacting matter-wave systems. N-particle quantum solitons and the ground state energy are analyzed using a variational approach. Applications to atomic/molecular Bose-Einstein condensates (BEC's) are given, where we predict the possibility of forming coupled BEC solitons in three space dimensions, and analyze superchemistry dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been observed experimentally [H.R. Xia, C.Y. Ye, and S.Y. Zhu, Phys. Rev. Lett. 77, 1032 (1996)] that quantum interference between two molecular transitions can lead to a suppression or enhancement of spontaneous emission. This is manifest in the fluorescent intensity as a function of the detuning of the driving field from the two-photon resonance condition. Here we present a theory that explains the observed variation of the number of peaks with the mutual polarization of the molecular transition dipole moments. Using master equation techniques we calculate analytically as well as numerically the steady-state fluorescence, and find that the number of peaks depends on the excitation process. If the molecule is driven to the upper levels by a two-photon process, the fluorescent intensity consists of two peaks regardless of the mutual polarization of the transition dipole moments. Lf the excitation process is composed of both a two-step, one-photon process and a one-step, two-photon process, then there are two peaks on transitions with parallel dipole moments and three peaks on transitions with antiparallel dipole moments. This latter case is in excellent agreement with the experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intracavity and external third order correlations in the damped nondegenerate parametric oscillator are calculated for quantum mechanics and stochastic electrodynamics (SED), a semiclassical theory. The two theories yield greatly different results, with the correlations of quantum mechanics being cubic in the system's nonlinear coupling constant and those of SED being linear in the same constant. In particular, differences between the two theories are present in at least a mesoscopic regime. They also exist when realistic damping is included. Such differences illustrate distinctions between quantum mechanics and a hidden variable theory for continuous variables.