998 resultados para ATLAS, particle physics, SM, ZZ, aTGC
Resumo:
The experiments at the Large Hadron Collider at the European Centre for Particle Physics, CERN, rely on efficient and reliable trigger systems for singling out interesting events. This thesis documents two online timing monitoring tools for the central trigger of the ATLAS experiment as well as the adaption of the central trigger simulation as part of the upgrade for the second LHC run. Moreover, a search for candidates for so-called Dark Matter, for which there is ample cosmological evidence, is presented. This search for generic weakly interacting massive particles (WIMPs) is based on the roughly 20/fb of proton-proton collisions at a centre-of-mass-energy of sqrt{s}=8 TeV recorded with the ATLAS detector in 2012. The considered signature are events with a highly energetic jet and large missing transverse energy. No significant deviation from the theory prediction is observed. Exclusion limits are derived on parameters of different signal models and compared to the results of other experiments. Finally, the results of a simulation study on the potential of the analysis at sqrt{s}=14 TeV are presented.
Resumo:
This Letter reports a search for a heavy particle that decays to WW using events produced in pp collisions at root s = 7 TeV. The data were recorded in 2011 by the ATLAS detector and correspond to an integrated luminosity of 4.7 fb(-1). WW -> lvl'v' (l,l' = e or mu) final states are considered and the distribution of the transverse mass of the W W candidates is found to be consistent with Standard Model expectations. Upper limits on the production cross section times branching ratio into W boson pairs are set for Randall-Sundrum and bulk Randall-Sundrum gravitons, which result in observed 95% CL lower limits on the masses of the two particles of 1.23 TeV and 0.84 TeV, respectively.
Resumo:
Measurements of fiducial and differential cross sections of Higgs boson production in the H →ZZ* → 4ℓ decay channel are presented. The cross sections are determined within a fiducial phase space and corrected for detection efficiency and resolution effects. They are based on 20.3 fb−1 of pp collision data, produced at √s = 8 TeV centre-of-mass energy at the LHC and recorded by the ATLAS detector. The differential measurements are performed in bins of transverse momentum and rapidity of the four-lepton system, the invariant mass of the subleading lepton pair and the decay angle of the leading lepton pair with respect to the beam line in the four-lepton rest frame, as well as the number of jets and the transverse momentum of the leading jet. The measured cross sections are compared to selected theoretical calculations of the Standard Model expectations. No significant deviation from any of the tested predictions is found. c
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
In the near future, the LHC experiments will continue to be upgraded as the LHC luminosity will increase from the design 1034 to 7.5 × 1034, with the HL-LHC project, to reach 3000 × f b−1 of accumulated statistics. After the end of a period of data collection, CERN will face a long shutdown to improve overall performance by upgrading the experiments and implementing more advanced technologies and infrastructures. In particular, ATLAS will upgrade parts of the detector, the trigger, and the data acquisition system. It will also implement new strategies and algorithms for processing and transferring the data to the final storage. This PhD thesis presents a study of a new pattern recognition algorithm to be used in the trigger system, which is a software designed to provide the information necessary to select physical events from background data. The idea is to use the well-known Hough Transform mathematical formula as an algorithm for detecting particle trajectories. The effectiveness of the algorithm has already been validated in the past, independently of particle physics applications, to detect generic shapes in images. Here, a software emulation tool is proposed for the hardware implementation of the Hough Transform, to reconstruct the tracks in the ATLAS Trigger and Data Acquisition system. Until now, it has never been implemented on electronics in particle physics experiments, and as a hardware implementation it would provide overall latency benefits. A comparison between the simulated data and the physical system was performed on a Xilinx UltraScale+ FPGA device.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Ce mémoire de maîtrise a pour objet une recherche de leptons lourds de quatrième génération avec les données prises par le détecteur ATLAS au LHC dans les collisions pp à $\sqrt{s}$ = 7 TeV et avec une luminosité intégrée de 1.02 fb$^{-1}$. Le processus étudié est la production au singulet de leptons lourds neutres de quatrième génération (N) par la voie du courant chargé suivi de la désintégration du celui-ci en un électron et un boson W : $ pp \to W \to N e \to e W e \to e e \nu_{\ell} \ell $ ($\ell$ = $e$ ou $\mu$), et dépend d'un paramètre de mélange $\xi^{2}$ avec un lepton léger. L'analyse passe par plusieurs étapes, soit l'utilisation de FeynRules pour construire le modèle pour ensuite générer des événements par MadGraph 5.1.2.4. Comme hypothèse de référence, on a choisi une masse de 100 GeV pour le lepton lourd neutre et $\xi_{Ne}^2$ = 0.19, donnant une section efficace de 0.312 pb pour une énergie au centre de masse de 7 TeV. Puisque la génération du signal s'est faite de manière privée à Montréal et non par la collaboration ATLAS, les résultats ne peuvent pas être reconnus officiellement. Sur la base de la simulation, avec des données correspondant à 1 fb$^{-1}$, la limite supérieure attendue à un niveau de confiance de $95\%$ sur la section efficace du signal est de 0.145 pb avec 0.294 pb pour un écart type($\sigma$) et 0.519 pb pour 2$\sigma$. La limite supérieure attendue à un niveau de confiance de $95\%$ sur $\xi_{Ne}^{2}$ de 0.09 pour une masse de 100 GeV.
Resumo:
An immense variety of problems in theoretical physics are of the non-linear type. Non~linear partial differential equations (NPDE) have almost become the rule rather than an exception in diverse branches of physics such as fluid mechanics, field theory, particle physics, statistical physics and optics, and the construction of exact solutions of these equations constitutes one of the most vigorous activities in theoretical physics today. The thesis entitled ‘Some Non-linear Problems in Theoretical Physics’ addresses various aspects of this problem at the classical level. For obtaining exact solutions we have used mathematical tools like the bilinear operator method, base equation technique and similarity method with emphasis on its group theoretical aspects. The thesis deals with certain methods of finding exact solutions of a number of non-linear partial differential equations of importance to theoretical physics. Some of these new solutions are of relevance from the applications point of view in diverse branches such as elementary particle physics, field theory, solid state physics and non-linear optics and give some insight into the stable or unstable behavior of dynamical Systems The thesis consists of six chapters.
Resumo:
In a recent paper, the hydrodynamic code NEXSPheRIO was used in conjunction with STAR analysis methods to study two-particle correlations as a function of Delta(eta) and Delta phi. The various structures observed in the data were reproduced. In this work, we discuss the origin of these structures as well as present new results.
Resumo:
A solution to a version of the Stieltjes moment. problem is presented. Using this solution, we construct a family of coherent states of a charged particle in a uniform magnetic field. We prove that these states form an overcomplete set that is normalized and resolves the unity. By the help of these coherent states we construct the Fock-Bergmann representation related to the particle quantization. This quantization procedure takes into account a circle topology of the classical motion. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
CMS is a general purpose experiment, designed to study the physics of pp collisions at 14 TeV at the Large Hadron Collider ( LHC). It currently involves more than 2000 physicists from more than 150 institutes and 37 countries. The LHC will provide extraordinary opportunities for particle physics based on its unprecedented collision energy and luminosity when it begins operation in 2007. The principal aim of this report is to present the strategy of CMS to explore the rich physics programme offered by the LHC. This volume demonstrates the physics capability of the CMS experiment. The prime goals of CMS are to explore physics at the TeV scale and to study the mechanism of electroweak symmetry breaking - through the discovery of the Higgs particle or otherwise. To carry out this task, CMS must be prepared to search for new particles, such as the Higgs boson or supersymmetric partners of the Standard Model particles, from the start- up of the LHC since new physics at the TeV scale may manifest itself with modest data samples of the order of a few fb(-1) or less. The analysis tools that have been developed are applied to study in great detail and with all the methodology of performing an analysis on CMS data specific benchmark processes upon which to gauge the performance of CMS. These processes cover several Higgs boson decay channels, the production and decay of new particles such as Z' and supersymmetric particles, B-s production and processes in heavy ion collisions. The simulation of these benchmark processes includes subtle effects such as possible detector miscalibration and misalignment. Besides these benchmark processes, the physics reach of CMS is studied for a large number of signatures arising in the Standard Model and also in theories beyond the Standard Model for integrated luminosities ranging from 1 fb(-1) to 30 fb(-1). The Standard Model processes include QCD, B-physics, diffraction, detailed studies of the top quark properties, and electroweak physics topics such as the W and Z(0) boson properties. The production and decay of the Higgs particle is studied for many observable decays, and the precision with which the Higgs boson properties can be derived is determined. About ten different supersymmetry benchmark points are analysed using full simulation. The CMS discovery reach is evaluated in the SUSY parameter space covering a large variety of decay signatures. Furthermore, the discovery reach for a plethora of alternative models for new physics is explored, notably extra dimensions, new vector boson high mass states, little Higgs models, technicolour and others. Methods to discriminate between models have been investigated. This report is organized as follows. Chapter 1, the Introduction, describes the context of this document. Chapters 2-6 describe examples of full analyses, with photons, electrons, muons, jets, missing E-T, B-mesons and tau's, and for quarkonia in heavy ion collisions. Chapters 7-15 describe the physics reach for Standard Model processes, Higgs discovery and searches for new physics beyond the Standard Model.
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)