991 resultados para ARMA-GARCH model


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper estimates the immediate impact of the European Central Bank’s asset purchase programmes on sovereign bond spreads in the euro area between 2008 and 2015 using a country-by-country GARCH model. The baseline estimates are rigorously diagnosed for misspecification and subjected to a wide range of sensitivity tests. Among others, changes in the dependent variable, the independent variables and the number of (G)ARCH terms are tested. Moreover, the model is applied to subsamples and dynamic conditional correlations are analyzed to estimate the effects of the asset purchases on the contagion of spread movements. Generally, it is found that the asset purchase programmes triggered an reduction of sovereign bond spreads. More specifically, the Securities Markets Programme (SMP) had the most significant immediate effects on sovereign bond spreads across the euro area. The announcements related to the Outright Monetary Transactions (OMT) programme also yielded substantial spread compression in the periphery. In contrast to that, the most recent Public Sector Purchase Programme (PSPP) announced in January 2015 and implemented since March 2015 had no significant immediate effects on sovereign bond spreads, except for Irish spreads. Hence, immediate effects seem to be dependent upon the size of the programme, the extent to which it targets distressed sovereigns and the way in which it is communicated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is a study of three techniques to improve performance of some standard fore-casting models, application to the energy demand and prices. We focus on forecasting demand and price one-day ahead. First, the wavelet transform was used as a pre-processing procedure with two approaches: multicomponent-forecasts and direct-forecasts. We have empirically compared these approaches and found that the former consistently outperformed the latter. Second, adaptive models were introduced to continuously update model parameters in the testing period by combining ?lters with standard forecasting methods. Among these adaptive models, the adaptive LR-GARCH model was proposed for the fi?rst time in the thesis. Third, with regard to noise distributions of the dependent variables in the forecasting models, we used either Gaussian or Student-t distributions. This thesis proposed a novel algorithm to infer parameters of Student-t noise models. The method is an extension of earlier work for models that are linear in parameters to the non-linear multilayer perceptron. Therefore, the proposed method broadens the range of models that can use a Student-t noise distribution. Because these techniques cannot stand alone, they must be combined with prediction models to improve their performance. We combined these techniques with some standard forecasting models: multilayer perceptron, radial basis functions, linear regression, and linear regression with GARCH. These techniques and forecasting models were applied to two datasets from the UK energy markets: daily electricity demand (which is stationary) and gas forward prices (non-stationary). The results showed that these techniques provided good improvement to prediction performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The techniques and insights from two distinct areas of financial economic modelling are combined to provide evidence of the influence of firm size on the volatility of stock portfolio returns. Portfolio returns are characterized by positive serial correlation induced by the varying levels of non-synchronous trading among the component stocks. This serial correlation is greatest for portfolios of small firms. The conditional volatility of stock returns has been shown to be well represented by the GARCH family of statistical processes. Using a GARCH model of the variance of capitalization-based portfolio returns, conditioned on the autocorrelation structure in the conditional mean, striking differences related to firm size are uncovered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents some forecasting techniques for energy demand and price prediction, one day ahead. These techniques combine wavelet transform (WT) with fixed and adaptive machine learning/time series models (multi-layer perceptron (MLP), radial basis functions, linear regression, or GARCH). To create an adaptive model, we use an extended Kalman filter or particle filter to update the parameters continuously on the test set. The adaptive GARCH model is a new contribution, broadening the applicability of GARCH methods. We empirically compared two approaches of combining the WT with prediction models: multicomponent forecasts and direct forecasts. These techniques are applied to large sets of real data (both stationary and non-stationary) from the UK energy markets, so as to provide comparative results that are statistically stronger than those previously reported. The results showed that the forecasting accuracy is significantly improved by using the WT and adaptive models. The best models on the electricity demand/gas price forecast are the adaptive MLP/GARCH with the multicomponent forecast; their MSEs are 0.02314 and 0.15384 respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exchange rate economics has achieved substantial development in the past few decades. Despite extensive research, a large number of unresolved problems remain in the exchange rate debate. This dissertation studied three puzzling issues aiming to improve our understanding of exchange rate behavior. Chapter Two used advanced econometric techniques to model and forecast exchange rate dynamics. Chapter Three and Chapter Four studied issues related to exchange rates using the theory of New Open Economy Macroeconomics. ^ Chapter Two empirically examined the short-run forecastability of nominal exchange rates. It analyzed important empirical regularities in daily exchange rates. Through a series of hypothesis tests, a best-fitting fractionally integrated GARCH model with skewed student-t error distribution was identified. The forecasting performance of the model was compared with that of a random walk model. Results supported the contention that nominal exchange rates seem to be unpredictable over the short run in the sense that the best-fitting model cannot beat the random walk model in forecasting exchange rate movements. ^ Chapter Three assessed the ability of dynamic general-equilibrium sticky-price monetary models to generate volatile foreign exchange risk premia. It developed a tractable two-country model where agents face a cash-in-advance constraint and set prices to the local market; the exogenous money supply process exhibits time-varying volatility. The model yielded approximate closed form solutions for risk premia and real exchange rates. Numerical results provided quantitative evidence that volatile risk premia can endogenously arise in a new open economy macroeconomic model. Thus, the model had potential to rationalize the Uncovered Interest Parity Puzzle. ^ Chapter Four sought to resolve the consumption-real exchange rate anomaly, which refers to the inability of most international macro models to generate negative cross-correlations between real exchange rates and relative consumption across two countries as observed in the data. While maintaining the assumption of complete asset markets, this chapter introduced endogenously segmented asset markets into a dynamic sticky-price monetary model. Simulation results showed that such a model could replicate the stylized fact that real exchange rates tend to move in an opposite direction with respect to relative consumption. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prior research has established that idiosyncratic volatility of the securities prices exhibits a positive trend. This trend and other factors have made the merits of investment diversification and portfolio construction more compelling. ^ A new optimization technique, a greedy algorithm, is proposed to optimize the weights of assets in a portfolio. The main benefits of using this algorithm are to: (a) increase the efficiency of the portfolio optimization process, (b) implement large-scale optimizations, and (c) improve the resulting optimal weights. In addition, the technique utilizes a novel approach in the construction of a time-varying covariance matrix. This involves the application of a modified integrated dynamic conditional correlation GARCH (IDCC - GARCH) model to account for the dynamics of the conditional covariance matrices that are employed. ^ The stochastic aspects of the expected return of the securities are integrated into the technique through Monte Carlo simulations. Instead of representing the expected returns as deterministic values, they are assigned simulated values based on their historical measures. The time-series of the securities are fitted into a probability distribution that matches the time-series characteristics using the Anderson-Darling goodness-of-fit criterion. Simulated and actual data sets are used to further generalize the results. Employing the S&P500 securities as the base, 2000 simulated data sets are created using Monte Carlo simulation. In addition, the Russell 1000 securities are used to generate 50 sample data sets. ^ The results indicate an increase in risk-return performance. Choosing the Value-at-Risk (VaR) as the criterion and the Crystal Ball portfolio optimizer, a commercial product currently available on the market, as the comparison for benchmarking, the new greedy technique clearly outperforms others using a sample of the S&P500 and the Russell 1000 securities. The resulting improvements in performance are consistent among five securities selection methods (maximum, minimum, random, absolute minimum, and absolute maximum) and three covariance structures (unconditional, orthogonal GARCH, and integrated dynamic conditional GARCH). ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

My dissertation investigates the financial linkages and transmission of economic shocks between the US and the smallest emerging markets (frontier markets). The first chapter sets up an empirical model that examines the impact of US market returns and conditional volatility on the returns and conditional volatilities of twenty-one frontier markets. The model is estimated via maximum likelihood; utilizes the GARCH model of errors, and is applied to daily country data from the MSCI Barra. We find limited, but statistically significant exposure of Frontier markets to shocks from the US. Our results suggest that it is not the lagged US market returns that have impact; rather it is the expected US market returns that influence frontier market returns The second chapter sets up an empirical time-varying parameter (TVP) model to explore the time-variation in the impact of mean US returns on mean Frontier market returns. The model utilizes the Kalman filter algorithm as well as the GARCH model of errors and is applied to daily country data from the MSCI Barra. The TVP model detects statistically significant time-variation in the impact of US returns and low, but statistically and quantitatively important impact of US market conditional volatility. The third chapter studies the risk-return relationship in twenty Frontier country stock markets by setting up an international version of the intertemporal capital asset pricing model. The systematic risk in this model comes from covariance of Frontier market stock index returns with world returns. Both the systematic risk and risk premium are time-varying in our model. We also incorporate own country variances as additional determinants of Frontier country returns. Our results suggest statistically significant impact of both world and own country risk in explaining Frontier country returns. Time-variation in the world risk premium is also found to be statistically significant for most Frontier market returns. However, own country risk is found to be quantitatively more important.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exchange rate economics has achieved substantial development in the past few decades. Despite extensive research, a large number of unresolved problems remain in the exchange rate debate. This dissertation studied three puzzling issues aiming to improve our understanding of exchange rate behavior. Chapter Two used advanced econometric techniques to model and forecast exchange rate dynamics. Chapter Three and Chapter Four studied issues related to exchange rates using the theory of New Open Economy Macroeconomics. Chapter Two empirically examined the short-run forecastability of nominal exchange rates. It analyzed important empirical regularities in daily exchange rates. Through a series of hypothesis tests, a best-fitting fractionally integrated GARCH model with skewed student-t error distribution was identified. The forecasting performance of the model was compared with that of a random walk model. Results supported the contention that nominal exchange rates seem to be unpredictable over the short run in the sense that the best-fitting model cannot beat the random walk model in forecasting exchange rate movements. Chapter Three assessed the ability of dynamic general-equilibrium sticky-price monetary models to generate volatile foreign exchange risk premia. It developed a tractable two-country model where agents face a cash-in-advance constraint and set prices to the local market; the exogenous money supply process exhibits time-varying volatility. The model yielded approximate closed form solutions for risk premia and real exchange rates. Numerical results provided quantitative evidence that volatile risk premia can endogenously arise in a new open economy macroeconomic model. Thus, the model had potential to rationalize the Uncovered Interest Parity Puzzle. Chapter Four sought to resolve the consumption-real exchange rate anomaly, which refers to the inability of most international macro models to generate negative cross-correlations between real exchange rates and relative consumption across two countries as observed in the data. While maintaining the assumption of complete asset markets, this chapter introduced endogenously segmented asset markets into a dynamic sticky-price monetary model. Simulation results showed that such a model could replicate the stylized fact that real exchange rates tend to move in an opposite direction with respect to relative consumption.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prior research has established that idiosyncratic volatility of the securities prices exhibits a positive trend. This trend and other factors have made the merits of investment diversification and portfolio construction more compelling. A new optimization technique, a greedy algorithm, is proposed to optimize the weights of assets in a portfolio. The main benefits of using this algorithm are to: a) increase the efficiency of the portfolio optimization process, b) implement large-scale optimizations, and c) improve the resulting optimal weights. In addition, the technique utilizes a novel approach in the construction of a time-varying covariance matrix. This involves the application of a modified integrated dynamic conditional correlation GARCH (IDCC - GARCH) model to account for the dynamics of the conditional covariance matrices that are employed. The stochastic aspects of the expected return of the securities are integrated into the technique through Monte Carlo simulations. Instead of representing the expected returns as deterministic values, they are assigned simulated values based on their historical measures. The time-series of the securities are fitted into a probability distribution that matches the time-series characteristics using the Anderson-Darling goodness-of-fit criterion. Simulated and actual data sets are used to further generalize the results. Employing the S&P500 securities as the base, 2000 simulated data sets are created using Monte Carlo simulation. In addition, the Russell 1000 securities are used to generate 50 sample data sets. The results indicate an increase in risk-return performance. Choosing the Value-at-Risk (VaR) as the criterion and the Crystal Ball portfolio optimizer, a commercial product currently available on the market, as the comparison for benchmarking, the new greedy technique clearly outperforms others using a sample of the S&P500 and the Russell 1000 securities. The resulting improvements in performance are consistent among five securities selection methods (maximum, minimum, random, absolute minimum, and absolute maximum) and three covariance structures (unconditional, orthogonal GARCH, and integrated dynamic conditional GARCH).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette thèse porte sur l’effet du risque de prix sur la décision des agriculteurs et les transformateurs québécois. Elle se divise en trois chapitres. Le premier chapitre revient sur la littérature. Le deuxième chapitre examine l’effet du risque de prix sur la production de trois produits, à savoir le maïs grain, la viande de porc et la viande d’agneau dans la province Québec. Le dernier chapitre est centré sur l’analyse de changement des préférences du transformateur québécois de porc pour ce qui est du choix de marché. Le premier chapitre vise à montrer l’importance de l’effet du risque du prix sur la quantité produite par les agriculteurs, tel que mis en évidence par la littérature. En effet, la littérature révèle l’importance du risque de prix à l’exportation sur le commerce international. Le deuxième chapitre est consacré à l’étude des facteurs du risque (les anticipations des prix et la volatilité des prix) dans la fonction de l’offre. Un modèle d’hétéroscédasticité conditionnelle autorégressive généralisée (GARCH) est utilisé afin de modéliser ces facteurs du risque. Les paramètres du modèle sont estimés par la méthode de l’Information Complète Maximum Vraisemblance (FIML). Les résultats empiriques montrent l’effet négatif de la volatilité du prix sur la production alors que la prévisibilité des prix a un effet positif sur la quantité produite. Comme attendu, nous constatons que l’application du programme d’assurance-stabilisation des revenus agricoles (ASRA) au Québec induit une plus importante sensibilité de l’offre par rapport au prix effectif (le prix incluant la compensation de l’ASRA) que par rapport au prix du marché. Par ailleurs, l’offre est moins sensible au prix des intrants qu’au prix de l’output. La diminution de l’aversion au risque de producteur est une autre conséquence de l’application de ce programme. En outre, l’estimation de la prime marginale relative au risque révèle que le producteur du maïs est le producteur le moins averse au risque (comparativement à celui de porc ou d’agneau). Le troisième chapitre consiste en l’analyse du changement de préférence du transformateur québécois du porc pour ce qui est du choix de marché. Nous supposons que le transformateur a la possibilité de fournir les produits sur deux marchés : étranger et local. Le modèle théorique explique l’offre relative comme étant une fonction à la fois d’anticipation relative et de volatilité relative des prix. Ainsi, ce modèle révèle que la sensibilité de l’offre relative par rapport à la volatilité relative de prix dépend de deux facteurs : d’une part, la part de l’exportation dans la production totale et d’autre part, l’élasticité de substitution entre les deux marchés. Un modèle à correction d’erreurs est utilisé lors d’estimation des paramètres du modèle. Les résultats montrent l’effet positif et significatif de l’anticipation relative du prix sur l’offre relative à court terme. Ces résultats montrent donc qu’une hausse de la volatilité du prix sur le marché étranger par rapport à celle sur le marché local entraine une baisse de l’offre relative sur le marché étranger à long terme. De plus, selon les résultats, les marchés étranger et local sont plus substituables à long terme qu’à court terme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research aims to investigate the Hedge Efficiency and Optimal Hedge Ratio for the future market of cattle, coffee, ethanol, corn and soybean. This paper uses the Optimal Hedge Ratio and Hedge Effectiveness through multivariate GARCH models with error correction, attempting to the possible phenomenon of Optimal Hedge Ratio differential during the crop and intercrop period. The Optimal Hedge Ratio must be bigger in the intercrop period due to the uncertainty related to a possible supply shock (LAZZARINI, 2010). Among the future contracts studied in this research, the coffee, ethanol and soybean contracts were not object of this phenomenon investigation, yet. Furthermore, the corn and ethanol contracts were not object of researches which deal with Dynamic Hedging Strategy. This paper distinguishes itself for including the GARCH model with error correction, which it was never considered when the possible Optimal Hedge Ratio differential during the crop and intercrop period were investigated. The commodities quotation were used as future price in the market future of BM&FBOVESPA and as spot market, the CEPEA index, in the period from May 2010 to June 2013 to cattle, coffee, ethanol and corn, and to August 2012 to soybean, with daily frequency. Similar results were achieved for all the commodities. There is a long term relationship among the spot market and future market, bicausality and the spot market and future market of cattle, coffee, ethanol and corn, and unicausality of the future price of soybean on spot price. The Optimal Hedge Ratio was estimated from three different strategies: linear regression by MQO, BEKK-GARCH diagonal model, and BEKK-GARCH diagonal with intercrop dummy. The MQO regression model, pointed out the Hedge inefficiency, taking into consideration that the Optimal Hedge presented was too low. The second model represents the strategy of dynamic hedge, which collected time variations in the Optimal Hedge. The last Hedge strategy did not detect Optimal Hedge Ratio differential between the crop and intercrop period, therefore, unlikely what they expected, the investor do not need increase his/her investment in the future market during the intercrop

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation contains four essays that all share a common purpose: developing new methodologies to exploit the potential of high-frequency data for the measurement, modeling and forecasting of financial assets volatility and correlations. The first two chapters provide useful tools for univariate applications while the last two chapters develop multivariate methodologies. In chapter 1, we introduce a new class of univariate volatility models named FloGARCH models. FloGARCH models provide a parsimonious joint model for low frequency returns and realized measures, and are sufficiently flexible to capture long memory as well as asymmetries related to leverage effects. We analyze the performances of the models in a realistic numerical study and on the basis of a data set composed of 65 equities. Using more than 10 years of high-frequency transactions, we document significant statistical gains related to the FloGARCH models in terms of in-sample fit, out-of-sample fit and forecasting accuracy compared to classical and Realized GARCH models. In chapter 2, using 12 years of high-frequency transactions for 55 U.S. stocks, we argue that combining low-frequency exogenous economic indicators with high-frequency financial data improves the ability of conditionally heteroskedastic models to forecast the volatility of returns, their full multi-step ahead conditional distribution and the multi-period Value-at-Risk. Using a refined version of the Realized LGARCH model allowing for time-varying intercept and implemented with realized kernels, we document that nominal corporate profits and term spreads have strong long-run predictive ability and generate accurate risk measures forecasts over long-horizon. The results are based on several loss functions and tests, including the Model Confidence Set. Chapter 3 is a joint work with David Veredas. We study the class of disentangled realized estimators for the integrated covariance matrix of Brownian semimartingales with finite activity jumps. These estimators separate correlations and volatilities. We analyze different combinations of quantile- and median-based realized volatilities, and four estimators of realized correlations with three synchronization schemes. Their finite sample properties are studied under four data generating processes, in presence, or not, of microstructure noise, and under synchronous and asynchronous trading. The main finding is that the pre-averaged version of disentangled estimators based on Gaussian ranks (for the correlations) and median deviations (for the volatilities) provide a precise, computationally efficient, and easy alternative to measure integrated covariances on the basis of noisy and asynchronous prices. Along these lines, a minimum variance portfolio application shows the superiority of this disentangled realized estimator in terms of numerous performance metrics. Chapter 4 is co-authored with Niels S. Hansen, Asger Lunde and Kasper V. Olesen, all affiliated with CREATES at Aarhus University. We propose to use the Realized Beta GARCH model to exploit the potential of high-frequency data in commodity markets. The model produces high quality forecasts of pairwise correlations between commodities which can be used to construct a composite covariance matrix. We evaluate the quality of this matrix in a portfolio context and compare it to models used in the industry. We demonstrate significant economic gains in a realistic setting including short selling constraints and transaction costs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research aims to investigate the Hedge Efficiency and Optimal Hedge Ratio for the future market of cattle, coffee, ethanol, corn and soybean. This paper uses the Optimal Hedge Ratio and Hedge Effectiveness through multivariate GARCH models with error correction, attempting to the possible phenomenon of Optimal Hedge Ratio differential during the crop and intercrop period. The Optimal Hedge Ratio must be bigger in the intercrop period due to the uncertainty related to a possible supply shock (LAZZARINI, 2010). Among the future contracts studied in this research, the coffee, ethanol and soybean contracts were not object of this phenomenon investigation, yet. Furthermore, the corn and ethanol contracts were not object of researches which deal with Dynamic Hedging Strategy. This paper distinguishes itself for including the GARCH model with error correction, which it was never considered when the possible Optimal Hedge Ratio differential during the crop and intercrop period were investigated. The commodities quotation were used as future price in the market future of BM&FBOVESPA and as spot market, the CEPEA index, in the period from May 2010 to June 2013 to cattle, coffee, ethanol and corn, and to August 2012 to soybean, with daily frequency. Similar results were achieved for all the commodities. There is a long term relationship among the spot market and future market, bicausality and the spot market and future market of cattle, coffee, ethanol and corn, and unicausality of the future price of soybean on spot price. The Optimal Hedge Ratio was estimated from three different strategies: linear regression by MQO, BEKK-GARCH diagonal model, and BEKK-GARCH diagonal with intercrop dummy. The MQO regression model, pointed out the Hedge inefficiency, taking into consideration that the Optimal Hedge presented was too low. The second model represents the strategy of dynamic hedge, which collected time variations in the Optimal Hedge. The last Hedge strategy did not detect Optimal Hedge Ratio differential between the crop and intercrop period, therefore, unlikely what they expected, the investor do not need increase his/her investment in the future market during the intercrop