995 resultados para APPROXIMATE PROGRAMMING STRATEGY
Resumo:
Medical universities and teaching hospitals in Iraq are facing a lack of professional staff due to the ongoing violence that forces them to flee the country. The professionals are now distributed outside the country which reduces the chances for the staff and students to be physically in one place to continue the teaching and limits the efficiency of the consultations in hospitals. A survey was done among students and professional staff in Iraq to find the problems in the learning and clinical systems and how Information and Communication Technology could improve it. The survey has shown that 86% of the participants use the Internet as a learning resource and 25% for clinical purposes while less than 11% of them uses it for collaboration between different institutions. A web-based collaborative tool is proposed to improve the teaching and clinical system. The tool helps the users to collaborate remotely to increase the quality of the learning system as well as it can be used for remote medical consultation in hospitals.
Resumo:
In Central Brazil, the long-term sustainability of beef cattle systems is under threat over vast tracts of farming areas, as more than half of the 50 million hectares of sown pastures are suffering from degradation. Overgrazing practised to maintain high stocking rates is regarded as one of the main causes. High stocking rates are deliberate and crucial decisions taken by the farmers, which appear paradoxical, even irrational given the state of knowledge regarding the consequences of overgrazing. The phenomenon however appears inextricably linked with the objectives that farmers hold. In this research those objectives were elicited first and from their ranking two, ‘asset value of cattle (representing cattle ownership)' and ‘present value of economic returns', were chosen to develop an original bi-criteria Compromise Programming model to test various hypotheses postulated to explain the overgrazing behaviour. As part of the model a pasture productivity index is derived to estimate the pasture recovery cost. Different scenarios based on farmers' attitudes towards overgrazing, pasture costs and capital availability were analysed. The results of the model runs show that benefits from holding more cattle can outweigh the increased pasture recovery and maintenance costs. This result undermines the hypothesis that farmers practise overgrazing because they are unaware or uncaring about overgrazing costs. An appropriate approach to the problem of pasture degradation requires information on the economics, and its interplay with farmers' objectives, for a wide range of pasture recovery and maintenance methods. Seen within the context of farmers' objectives, some level of overgrazing appears rational. Advocacy of the simple ‘no overgrazing' rule is an insufficient strategy to maintain the long-term sustainability of the beef production systems in Central Brazil.
Resumo:
In Central Brazil, the long-term, sustainability of beef cattle systems is under threat over vast tracts of farming areas, as more than half of the 50 million hectares of sown pastures are suffering from. degradation. Overgrazing practised to maintain high stocking rates is regarded as one of the main causes. High stocking rates are deliberate and crucial decisions taken by the farmers, which appear paradoxical, even irrational given the state of knowledge regarding the consequences of overgrazing. The phenomenon however appears inextricably linked with the objectives that farmers hold. In this research those objectives were elicited first and from their ranking two, 'asset value of cattle (representing cattle ownership and 'present value of economic returns', were chosen to develop an original bi-criteria Compromise Programming model to test various hypotheses postulated to explain the overgrazing behaviour. As part of the model a pasture productivity index is derived to estimate the pasture recovery cost. Different scenarios based on farmers' attitudes towards overgrazing, pasture costs and capital availability were analysed. The results of the model runs show that benefits from holding more cattle can outweigh the increased pasture recovery and maintenance costs. This result undermines the hypothesis that farmers practise overgrazing because they are unaware or uncaring caring about overgrazing costs. An appropriate approach to the problem of pasture degradation requires information on the economics,and its interplay with farmers' objectives, for a wide range of pasture recovery and maintenance methods. Seen within the context of farmers' objectives, some level of overgrazing appears rational. Advocacy of the simple 'no overgrazing' rule is an insufficient strategy to maintain the long-term sustainability of the beef production systems in Central Brazil. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Milk supply from Mexican dairy farms does not meet demand and small-scale farms can contribute toward closing the gap. Two multi-criteria programming techniques, goal programming and compromise programming, were used in a study of small-scale dairy farms in central Mexico. To build the goal and compromise programming models, 4 ordinary linear programming models were also developed, which had objective functions to maximize metabolizable energy for milk production, to maximize margin of income over feed costs, to maximize metabolizable protein for milk production, and to minimize purchased feedstuffs. Neither multicriteria approach was significantly better than the other; however, by applying both models it was possible to perform a more comprehensive analysis of these small-scale dairy systems. The multi-criteria programming models affirm findings from previous work and suggest that a forage strategy based on alfalfa, rye-grass, and corn silage would meet nutrient requirements of the herd. Both models suggested that there is an economic advantage in rescheduling the calving season to the second and third calendar quarters to better synchronize higher demand for nutrients with the period of high forage availability.
Resumo:
A limitation of small-scale dairy systems in central Mexico is that traditional feeding strategies are less effective when nutrient availability varies through the year. In the present work, a linear programming (LP) model that maximizes income over feed cost was developed, and used to evaluate two strategies: the traditional one used by the small-scale dairy producers in Michoacan State, based on fresh lucerne, maize grain and maize straw; and an alternative strategy proposed by the LIP model, based on ryegrass hay, maize silage and maize grain. Biological and economic efficiency for both strategies were evaluated. Results obtained with the traditional strategy agree with previously published work. The alternative strategy did not improve upon the performance of the traditional strategy because of low metabolizable protein content of the maize silage considered by the model. However, the Study recommends improvement of forage quality to increase the efficiency of small-scale dairy systems, rather than looking for concentrate supplementation.
Resumo:
Small-scale dairy systems play an important role in the Mexican dairy sector and farm planning activities related to resource allocation have a significant impact on the profitability of such enterprises. Linear programming is a technique widely used for planning and ration formulation, and partial budgeting is a technique for assessing the impact of changes on the profitability of an enterprise. This study used both methods to optimise land use for forage production and nutrient availability, and to evaluate the economic impact of such changes in small-scale Mexican dairy systems. The model showed satisfactory performance when optimal solutions were compared with the traditional strategy. The strategy using fresh ryegrass, maize silage and oat hay, and the strategy using a combination of alfalfa hay, maize silage, fresh ryegrass and oat hay appeared attractive options for providing a better nutrient supply and maintaining a higher stocking rate throughout the year than the traditional strategy.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The transmission network planning problem is a non-linear integer mixed programming problem (NLIMP). Most of the algorithms used to solve this problem use a linear programming subroutine (LP) to solve LP problems resulting from planning algorithms. Sometimes the resolution of these LPs represents a major computational effort. The particularity of these LPs in the optimal solution is that only some inequality constraints are binding. This task transforms the LP into an equivalent problem with only one equality constraint (the power flow equation) and many inequality constraints, and uses a dual simplex algorithm and a relaxation strategy to solve the LPs. The optimisation process is started with only one equality constraint and, in each step, the most unfeasible constraint is added. The logic used is similar to a proposal for electric systems operation planning. The results show a higher performance of the algorithm when compared to primal simplex methods.
Resumo:
Within a weekly market horizon, this paper considers a power producer that sells its energy both in the pool and through weekly forward contracts. The paper provides a methodology that allows the producer to derive the self-scheduling of its production units, to select weekly forward contracts, and to obtain the offering strategy for Monday's pool. The proposed technique is based on stochastic programming and allows the producer to maximize its expected profit while controlling the risk of profit variability. A comprehensive case study is used to illustrate the characteristics of the proposed methodology. Appropriate conclusions are finally drawn.
Resumo:
Includes bibliography
Resumo:
In this paper a mathematical model that combines lot-sizing and cutting-stock problems applied to the furniture industry is presented. The model considers the usual decisions of the lot sizing problems, as well as operational decisions related to the cutting machine programming. Two sets of a priori generated cutting patterns are used, industry cutting patterns and a class of n-group cutting patterns. A strategy to improve the utilization of the cutting machine is also tested. An optimization package was used to solve the model and the computational results, using real data from a furniture factory, show that a small subset of n-group cutting patterns provides good results and that the cutting machine utilization can be improved by the proposed strategy.
Resumo:
Maximum-likelihood decoding is often the optimal decoding rule one can use, but it is very costly to implement in a general setting. Much effort has therefore been dedicated to find efficient decoding algorithms that either achieve or approximate the error-correcting performance of the maximum-likelihood decoder. This dissertation examines two approaches to this problem. In 2003 Feldman and his collaborators defined the linear programming decoder, which operates by solving a linear programming relaxation of the maximum-likelihood decoding problem. As with many modern decoding algorithms, is possible for the linear programming decoder to output vectors that do not correspond to codewords; such vectors are known as pseudocodewords. In this work, we completely classify the set of linear programming pseudocodewords for the family of cycle codes. For the case of the binary symmetric channel, another approximation of maximum-likelihood decoding was introduced by Omura in 1972. This decoder employs an iterative algorithm whose behavior closely mimics that of the simplex algorithm. We generalize Omura's decoder to operate on any binary-input memoryless channel, thus obtaining a soft-decision decoding algorithm. Further, we prove that the probability of the generalized algorithm returning the maximum-likelihood codeword approaches 1 as the number of iterations goes to infinity.
Resumo:
In this work we are concerned with the analysis and numerical solution of Black-Scholes type equations arising in the modeling of incomplete financial markets and an inverse problem of determining the local volatility function in a generalized Black-Scholes model from observed option prices. In the first chapter a fully nonlinear Black-Scholes equation which models transaction costs arising in option pricing is discretized by a new high order compact scheme. The compact scheme is proved to be unconditionally stable and non-oscillatory and is very efficient compared to classical schemes. Moreover, it is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. In the next chapter we turn to the calibration problem of computing local volatility functions from market data in a generalized Black-Scholes setting. We follow an optimal control approach in a Lagrangian framework. We show the existence of a global solution and study first- and second-order optimality conditions. Furthermore, we propose an algorithm that is based on a globalized sequential quadratic programming method and a primal-dual active set strategy, and present numerical results. In the last chapter we consider a quasilinear parabolic equation with quadratic gradient terms, which arises in the modeling of an optimal portfolio in incomplete markets. The existence of weak solutions is shown by considering a sequence of approximate solutions. The main difficulty of the proof is to infer the strong convergence of the sequence. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution, but without additional regularity assumptions on the solution. The results are illustrated by a numerical example.