162 resultados para ANGIOSPERMS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extrafloral nectaries (EFNs) are structurally variable and widely spread among the angiosperms. The occurrence of EFNs in leaves of Pterodon polygalaeflorus Benth. and Pterodon pubescens Benth. (Fabaceae: Papilionoideae) were detected in adult specimens, at the time of production of new buds and flowers. The goals of the present study are to register the occurrence of the EFNs in P. pubescens and P. polygalaeflorus, and provide comparative data on the anatomical structures. The EFNs occur in the rachis and are located under the insertion of each petiolule. Each nectary consists of a small elevation whose apical portion is deeply invaginated, resulting in a depression (secretory pole), a common characteristic of both species. Unicellular, nonglandular trichomes occur along the rachis, being less numerous in P. polygalaeflorus while in P. pubescens they cover the EFNs. The secretory tissue consists of parenchyma cells with dense cytoplasm compactly arranged. The nectar reaches the surface of the EFNs by rupturing the thin cuticle which covers the secretory pole, since both species lack stomata or any other interruption at the epidermis. The basic difference between the two species, in relation to the EFNs, is the density of the pubescence, which is always greater in P. pubescens. Structural and dimensional modifications may be observed, even between basal and apical nectaries in the same rachis, so it does not constitute a taxonomical tool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

First genome size estimations for some eudicot families and genera.- Genome size diversity in angiosperms varies roughly 2400-fold, although approximately 45% of angiosperm families lack a single genome size estimation, and therefore, this range could be enlarged. To contribute completing family and genera representation, DNA C-Values are here provided for 19 species from 16 eudicot families, including first values for 6 families, 14 genera and 17 species. The sample of species studied is very diverse, including herbs, weeds, vines, shrubs and trees. Data are discussed regarding previous genome size estimates of closely related species or genera, if any, their chromosome number, growth form or invasive behaviour. The present research contributes approximately 1.5% new values for previously unreported angiosperm families, being the current coverage around 55% of angiosperm families, according to the Plant DNA C-Values Database.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phototropism enables plants to orient growth towards the direction of light and thereby maximizes photosynthesis in low-light environments. In angiosperms, blue-light photoreceptors called phototropins are primarily involved in sensing the direction of light. Phytochromes and cryptochromes (sensing red/far-red and blue light, respectively) also modulate asymmetric hypocotyl growth, leading to phototropism. Interactions between different light-signaling pathways regulating phototropism occur in cryptogams and angiosperms. In this review, we focus on the molecular mechanisms underlying the co-action between photosensory systems in the regulation of hypocotyl phototropism in Arabidopsis thaliana. Recent studies have shown that phytochromes and cryptochromes enhance phototropism by controlling the expression of important regulators of phototropin signaling. In addition, phytochromes may also regulate growth towards light via direct interaction with the phototropins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The remarkable plasticity of plant ontogeny is shaped by hormone pathways, which not only orchestrate intrinsic developmental programs, but also convey environmental inputs. Several classes of plant hormones exist, and among them auxin, brassinosteroid and gibberellin are central for the regulation of growth in general and of cell elongation in particular. Various growth phenomena can be modulated by each of the three hormones, in a sometimes synergistic fashion, suggesting physiological redundancy and/or crosstalk between the different pathways. Whether this means that they target a common and unique transcriptome module, or rather separate growth-promoting transcriptome modules, remains unclear, however. Nevertheless, while surprisingly few molecular mediators of direct crosstalk in the proper sense have been isolated, evidence is accumulating for complex cross-regulatory relations between hormone pathways at the level of transcription, as exemplified in root meristem growth. The growing number of available genome sequences from the green lineage offers first glimpses at the evolution of hormone pathways, which can aid in understanding the multiple relationships observed between these pathways in angiosperms. The available analyses suggest that auxin, gibberellin and brassinosteroid signalling arose during land plant evolution in this order, correlating with increased morphological complexity and possibly conferring increased developmental flexibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Casparian strip-bearing endodermis is a feature that has been invariably present in the roots of ferns and angiosperms for approximately 400 million years. As the innermost cortical layer that surrounds the central vasculature of roots, the endodermis acts as a barrier to the free diffusion of solutes from the soil into the stele. Based on an enormous body of anatomical and physiological work, the protective endodermal diffusion barrier is thought to be of major importance for many aspects of root biology, reaching from efficient water and nutrient transport to defense against soil-borne pathogens. Until recently, however, we were ignorant about the genes and mechanisms that drive the differentiation of this intricately structured barrier. Recent work in Arabidopsis has now identified the first major players in Casparian strip formation. A mechanistic understanding of endodermal differentiation will finally allow us to specifically interfere with endodermal barrier function and study the effects on plant growth and survival under various stress conditions. Here, I critically review the major findings and models related to endodermal structure and function from other plant species and assess them in light of recent molecular data from Arabidopsis, pointing out where the older, descriptive work can provide a framework and inspiration for further molecular dissection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Approximately 0.2 % of all angiosperms are classified as metal hyperaccumulators based on their extraordinarily high leaf metal contents, for example >1 % zinc, >0.1 % nickel or >0.01 % cadmium (Cd) in dry biomass. So far, metal hyperaccumulation has been considered to be a taxon-wide, constitutively expressed trait, the extent of which depends solely on available metal concentrations in the soil. Here we show that in the facultative metallophyte Arabidopsis halleri, both insect herbivory and mechanical wounding of leaves trigger an increase specifically in leaf Cd accumulation. Moreover, the Cd concentrations accumulated in leaves can serve as an elemental defense against herbivory by larvae of the Brassicaceae specialist small white (Pieris rapae), thus allowing the plant to take advantage of this non-essential trace element and toxin. Metal homeostasis genes are overrepresented in the systemic transcriptional response of roots to the wounding of leaves in A. halleri, supporting that leaf Cd accumulation is preceded by systemic signaling events. A similar, but quantitatively less pronounced transcriptional response was observed in A. thaliana, suggesting that the systemically regulated modulation of metal homeostasis in response to leaf wounding also occurs in non-hyperaccumulator plants. This is the first report of an environmental stimulus influencing metal hyperaccumulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Major factors influencing the phenotypic diversity of a lineage can be recognized by characterizing the extent and mode of trait evolution between related species. Here, we compared the evolutionary dynamics of traits associated with floral morphology and climatic preferences in a clade composed of the genera Codonanthopsis, Codonanthe and Nematanthus (Gesneriaceae). To test the mode and specific components that lead to phenotypic diversity in this group, we performed a Bayesian phylogenetic analysis of combined nuclear and plastid DNA sequences and modeled the evolution of quantitative traits related to flower shape and size and to climatic preferences. We propose an alternative approach to display graphically the complex dynamics of trait evolution along a phylogenetic tree using a wide range of evolutionary scenarios. RESULTS: Our results demonstrated heterogeneous trait evolution. Floral shapes displaced into separate regimes selected by the different pollinator types (hummingbirds versus insects), while floral size underwent a clade-specific evolution. Rates of evolution were higher for the clade that is hummingbird pollinated and experienced flower resupination, compared with species pollinated by bees, suggesting a relevant role of plant-pollinator interactions in lowland rainforest. The evolution of temperature preferences is best explained by a model with distinct selective regimes between the Brazilian Atlantic Forest and the other biomes, whereas differentiation along the precipitation axis was characterized by higher rates, compared with temperature, and no regime or clade-specific patterns. CONCLUSIONS: Our study shows different selective regimes and clade-specific patterns in the evolution of morphological and climatic components during the diversification of Neotropical species. Our new graphical visualization tool allows the representation of trait trajectories under parameter-rich models, thus contributing to a better understanding of complex evolutionary dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prevalence of autopolyploids in angiosperms has long been a subject of debate. Meurountzing (1936) and Darlington (1937) conclude d that autopolyploids were common and important evolutionary entities. However, Clausen et al. (1945) and Stebbins (1947) subsequently considered them rare, in part because the criteria upon which interpretations of autopolyploidy were rendered were not rigorous. This position was reiterated by Grant (1981) decades later, although evidence was mounting that autopolyploid taxa might be important in natural populations (Lewis, 1980). As cytological and genetic data have accumulated, it has become increasingly apparent that the latter view is likely to be correct (Soltis et al., 2004b, 2007, 2010). However, it still appears that the majority of polyploids are allopolyploids (Parisod et al., 2010; Soltis et al., 2010), even though Ramsey & Schemske (1998, p. 467) conclude that 'the rate of autopolyploid formation may often be higher than the rate of allopol yploid formation.' In this letter we survey the literature to assess whether allopolyploids are indeed the prevailing cytotype in nature. Using our new estimates for the incidence of autopolyploidy and allopolyploidy, we discuss some of the evolutionary dynamics that may be driving their frequencies in nature. Finally, we suggest avenues for future research on polyploidy that build on our results and other recent progress in the field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The terpenoid composition of seven amber samples from Araripe Basin (Santana Formation, Crato Member) has been analyzed by gas chromatography-mass spectrometry to determine their botanical origin. The diterpenoids, which have been identified in the fossil resin extracts are derived primarily from the abietane class, e.g., dehydroabietane, 4-epidehydroabietol, 16,17,18-trisnorabieta-8,11,13-triene, 7-oxo-16,17,19-trisnorabieta-8,11,13-trieno, dehydroabietic acid, ferruginol, hinokiol and hinokione. Their composition is certainly typical for conifers, and angiosperms can be excluded as the botanical source, as no triterpene was identified. The terpenoid characteristics strongly support a relationship to the Araucariaceae or Podocarpaceae families. In addition, the fossil record of the embedding sediments (pollen and fossil leaves) also supports the proposal of these paleobotanical origins for the ambers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of the present study was to identify plant species used as food source, the floral resources utilized, and the insects that visit flowers in a grassland community in southern Brazil. The study was carried out in an area of one hectare, located in a grassland formation in the Parque Estadual de Itapuã, State of Rio Grande do Sul, Brazil. The flowering pattern was seasonal, and richness and abundance of insects was higher during the period of high resource availability. Flowers of 106 species of angiosperms (73 genera and 34 families) were used as source of floral resources for 219 species (2,767 specimens) of insects. A total of 91.5% of plant species were visited by bees, 53.8% by flies, 34.9% by wasps, 22.6% by butterflies, and 12.3% by beetles. Nectar was the main resource consumed by the visitors (41.1%). Asteraceae was the richest (38 spp.) and most visited family, with 63.1% of the species and 49.5% of all specimens of recorded insects. Bees were the most representative insects (33.2% spp., 65% indiv.), followed by flies (26.9% spp., 16.5% indiv.), wasps, butterflies and beetles. 40 plant species were considered important resources for the floral visitors' community, due to high number of, both, species and individuals recorded in their flowers. The family Asteraceae as a species set was the main floral resource used by insect visitors through the year and has great importance for the maintenance of populations of many species of bees, flies, wasps and butterflies in the studied area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the detection of insulin-like antigens in a large range of species utilizing a modified ELISA plate assay and Western blotting. We tested the leaves or aerial parts of species of Rhodophyta (red alga), Bryophyta (mosses), Psilophyta (whisk ferns), Lycopodophyta (club mosses), Sphenopsida (horsetails), gymnosperms, and angiosperms, including monocots and dicots. We also studied species of fungi and a cyanobacterium, Spirulina maxima. The wide distribution of insulin-like antigens, which in some cases present the same electrophoretic mobility as bovine insulin, together with results recently published by us on the amino acid sequence of an insulin isolated from the seed coat of jack bean (Canavalia ensiformis) and from the developing fruits of cowpea (Vigna unguiculata), suggests that pathways depending on this hormone have been conserved through evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chez les angiospermes, la reproduction passe par la double fécondation. Le tube pollinique délivre deux cellules spermatiques au sein du gamétophyte femelle. Une cellule féconde la cellule œuf pour produire un zygote; l’autre féconde la cellule centrale pour produire l’endosperme. Pour assurer un succès reproductif, le développement du gamétophyte femelle au sein de l’ovule doit établir un patron cellulaire qui favorise les interactions avec le tube pollinique et les cellules spermatiques. Pour ce faire, un dialogue doit s’établir entre les différentes cellules de l’ovule lors de son développement, de même que lors de la fécondation. D’ailleurs, plusieurs types de communications intercellulaires sont supposées suite à la caractérisation de plusieurs mutants développementaux. De même, ces communications semblent persister au sein du zygote et de l’endosperme pour permettre la formation d’un embryon viable au sein de la graine. Malgré les développements récents qui ont permis de trouver des molécules de signalisation supportant les modèles d’interactions cellulaires avancés par la communauté scientifique, les voies de signalisation sont de loin très incomplètes. Dans le but de caractériser des gènes encodant des protéines de signalisation potentiellement impliqués dans la reproduction chez Solanum chacoense, l’analyse d’expression des gènes de type RALF présents dans une banque d’ESTs (Expressed Sequence Tags) spécifiques à l’ovule après fécondation a été entreprise. RALF, Rapid Alcalinization Factor, est un peptide de 5 kDa qui fait partie de la superfamille des «protéines riches en cystéines (CRPs)», dont les rôles physiologiques au sein de la plante sont multiples. Cette analyse d’expression a conduit à une analyse approfondie de ScRALF3, dont l’expression au sein de la plante se limite essentiellement à l’ovule. L’analyse de plantes transgéniques d’interférence pour le gène ScRALF3 a révélé un rôle particulier lors de la mégagamétogénèse. Les plantes transgéniques présentent des divisions mitotiques anormales qui empêchent le développement complet du sac embryonnaire. Le positionnement des noyaux, de même que la synchronisation des divisions au sein du syncytium, semblent responsables de cette perte de progression lors de la mégagamétogénèse. L’isolement du promoteur de même que l’analyse plus précise d’expression au sein de l’ovule révèle une localisation sporophytique du transcrit. La voie de signalisation de l’auxine régule également la transcription de ScRALF3. De surcroît, ScRALF3 est un peptide empruntant la voie de sécrétion médiée par le réticulum endoplasmique et l’appareil de Golgi. En somme, ScRALF3 est un important facteur facilitant la communication entre le sporophyte et le gamétophyte pour amener à maturité le sac embryonnaire. L’identification d’un orthologue potentiel chez Arabidopsis thaliana a conduit à la caractérisation de AtRALF34. L’absence de phénotype lors du développement du sac embryonnaire suggère, cependant, de la redondance génétique au sein de la grande famille des gènes de type RALF. Néanmoins, les peptides RALFs apparaissent comme d’importants régulateurs lors de la reproduction chez Solanum chacoense et Arabidopsis thaliana.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Overall phylogenetic relationships within the genus Pelargonium (Geraniaceae) were inferred based on DNA sequences from mitochondrial(mt)-encoded nad1 b/c exons and from chloroplast(cp)-encoded trnL (UAA) 5' exon-trnF (GAA) exon regions using two species of Geranium and Sarcocaulon vanderetiae as outgroups. The group II intron between nad1 exons b and c was found to be absent from the Pelargonium, Geranium, and Sarcocaulon sequences presented here as well as from Erodium, which is the first recorded loss of this intron in angiosperms. Separate phylogenetic analyses of the mtDNA and cpDNA data sets produced largely congruent topologies, indicating linkage between mitochondrial and chloroplast genome inheritance. Simultaneous analysis of the combined data sets yielded a well-resolved topology with high clade support exhibiting a basic split into small and large chromosome species, the first group containing two lineages and the latter three. One large chromosome lineage (x = 11) comprises species from sections Myrrhidium and Chorisma and is sister to a lineage comprising P. mutans (x = 11) and species from section Jenkinsonia (x = 9). Sister to these two lineages is a lineage comprising species from sections Ciconium (x = 9) and Subsucculentia (x = 10). Cladistic evaluation of this pattern suggests that x = 11 is the ancestral basic chromosome number for the genus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein tyrosine phosphorylation in angiosperms has been implicated in various physiological processes, including seed development and germination. In conifers, the role of tyrosine phosphorylation and the mechanisms of its regulation are yet to be investigated. In this study, we examined the profile of protein tyrosine phosphorylation in Scots pine seeds at different stages of germination. We detected extensive protein tyrosine phosphorylation in extracts from Scots pine (Pinus sylvestris L.) dormant seeds. In addition, the pattern of tyrosine phosphorylation was found to change significantly during seed germination, especially at earlier stages of post-imbibition which coincides with the initiation of cell division, and during the period of intensive elongation of hypocotyls. To better understand the molecular mechanisms of phosphotyrosine signaling, we employed affinity purification and mass spectrometry for the identification of pTyr-binding proteins from the extracts of Scots pine seedlings. Using this approach, we purified two proteins of 10 and 43 kDa, which interacted specifically with pTyr-Sepharose and were identified by mass spectrometry as P. sylvestris defensin 1 (PsDef1) and aldose 1-epimerase (EC:5.1.3.3), respectively. Additionally, we demonstrated that both endogenous and recombinant PsDef1 specifically interact with pTyr-Sepharose, but not Tyr-beads. As the affinity purification approach did not reveal the presence of proteins with known pTyr binding domains (SH2, PTB and C2), we suggest that plants may have evolved a different mode of pTyr recognition, which yet remains to be uncovered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phylogenetic placement of Kuhlmanniodendron Fiaschi & Groppo (Achariaceae) within Malpighiales was investigated with rbcL sequence data. This genus was recently created to accommodate Carpotroche apterocarpa Kuhlm., a poorly known species from the rainforests of Espirito Santo, Brazil. One rbcL sequence was obtained from Kuhlmanniodendron and analyzed with 73 additional sequences from Malpighiales, and 8 from two closer orders, Oxalidales and Celastrales, all of which were available at Genbank. Phylogenetic analyses were carried out with maximum parsimony and Bayesian inference; bootstrap analyses were used in maximum parsimony to evaluate branch support. The results confirmed the placement of Kuhlmanniodendron together with Camptostylus, Lindackeria, Xylotheca, and Caloncoba in a strongly supported clade (posterior probability = 0.99) that corresponds with the tribe Lindackerieae of Achariaceae (Malpighiales). Kuhlmanniodendron also does not appear to be closely related to Oncoba (Salicaceae), an African genus with similar floral and fruit morphology that has been traditionally placed among cyanogenic Flacourtiaceae (now Achariaceae). A picrosodic paper test was performed in herbarium dry leaves, and the presence of cyanogenic glycosides, a class of compounds usually found in Achariaceae, was detected. Pollen morphology and wood anatomy of Kuhlmanniodendron were also investigated, but both pollen (3-colporate and microreticulate) and wood, with solitary to multiple vessels, scalariform perforation plates and other features, do not seem to be useful to distinguish this genus from other members of the Achariaceae and are rather common among the eudicotyledons as a whole. However, perforated ray cells with scalariform plates, an uncommon wood character, present in Kuhlmanniodendron are similar to those found in Kiggelaria africana (Pangieae, Achariaceae), but the occurrence of such cells is not mapped among the angiosperms, and it is not clear how homoplastic this character could be.