992 resultados para ANG II


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study we investigated the effects of the injection into the supraoptic nucleus (SON) of non-peptide AT1- and AT2-angiotensin II (ANG II) receptor antagonists, DuP753 and PD123319, as well as of the arginine-vasopressin (AVP) receptor antagonist d(CH2)5-Tyr(Me)-AVP, on water and 3% NaCl intake induced by the injection of ANG II into the medial septal area (MSA). The effects on water or 3% NaCl intake were assessed in 30-h water-deprived or in 20-h water-deprived furosemide-treated adult male rats, respectively. The drugs were injected in 0.5 µl over 30-60 s. Controls were injected with a similar volume of 0.15 M NaCl. Antagonists were injected at doses of 20, 80 and 180 nmol. Water and sodium intake was measured over a 2-h period. Previous administration of the AT1 receptor antagonist DuP753 into the SON decreased water (65%, N = 10, P<0.01) and sodium intake (81%, N = 8, P<0.01) induced by the injection of ANG II (10 nmol) into the MSA. Neither of these responses was significantly changed by injection of the AT2-receptor antagonist PD123319 into the SON. On the other hand, while there was a decrease in water intake (45%, N = 9, P<0.01), ANG II-induced sodium intake was significantly increased (70%, N = 8, P<0.01) following injection of the V1-type vasopressin antagonist d(CH2)5-Tyr(Me)-AVP into the SON. These results suggest that both AT1 and V1 receptors within the SON may be involved in water and sodium intake induced by the activation of ANG II receptors within the MSA. Furthermore, they do not support the involvement of MSA AT2 receptors in the mediation of these responses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mechanism by which Ang II stimulates the growth of vascular smooth muscle cells was investigated by measuring the phosphorylation of mitogen-activated protein kinases ERK 1 and ERK 2. Ca2+ ionophore was found to have effects practically analogous to Ang II. We found that the signaling pathway involves the activation of epidermal growth factor receptor (EGFR) kinase, activation of the adaptor proteins Shc and Grb2, and the small G-protein Ras. Although the mechanism of AT1- (or Ca2+)-induced activation of EGFR is not yet clear, we have found that calcium-dependent protein kinase CAKß/PYK2 and c-Src are involved in this process. These studies indicate a transactivation mechanism that utilizes EGFR as a bridge between a Gq-coupled receptor and activation of phosphotyrosine generation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Angiotensin II (Ang II)* is a multifunctional hormone that influences the function of cardiovascular cells through a complex series of intracellular signaling events initiated by the interaction of Ang II with AT1 and AT2 receptors. AT1 receptor activation leads to cell growth, vascular contraction, inflammatory responses and salt and water retention, whereas AT2 receptors induce apoptosis, vasodilation and natriuresis. These effects are mediated via complex, interacting signaling pathways involving stimulation of PLC and Ca2+ mobilization; activation of PLD, PLA2, PKC, MAP kinases and NAD(P)H oxidase, and stimulation of gene transcription. In addition, Ang II activates many intracellular tyrosine kinases that play a role in growth signaling and inflammation, such as Src, Pyk2, p130Cas, FAK and JAK/STAT. These events may be direct or indirect via transactivation of tyrosine kinase receptors, including PDGFR, EGFR and IGFR. Ang II induces a multitude of actions in various tissues, and the signaling events following occupancy and activation of Ang receptors are tightly controlled and extremely complex. Alterations of these highly regulated signaling pathways may be pivotal in structural and functional abnormalities that underlie pathological processes in cardiovascular diseases such as cardiac hypertrophy, hypertension and atherosclerosis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We determined the effects of losartan (40 nmol) and PD 123319 (40 nmol) (both non-peptides and selective antagonists of the AT1 and AT2 angiotensin receptors, respectively), and [Sar¹, Ala8] angiotensin II (ANG II) (40 nmol) (a non-selective peptide antagonist of angiotensin receptors) injected into the paraventricular nucleus (PVN) on the water and salt appetite, diuresis and natriuresis and mean arterial pressure (MAP) induced by administration of 10 nmol of ANG II into the medial septal area (MSA) of male Holtzman rats weighing 250-300 g. The volume of drug solution injected was 0.5 µl over a period of 10-15 s. The responses were measured over a period of 120 min. ANG II alone injected into the MSA induced an increase in all the above parameters (8.1 ± 1.2, 1.8 ± 0.3, and 17.1 ± 1.0 ml, 217 ± 25 µEq/120 min, and 24 ± 4 mmHg, respectively, N = 10-12) compared with vehicle-treated rats (1.4 ± 0.2, 0.6 ± 0.1, and 9.3 ± 0.5 ml, 47 ± 5 µEq/120 min, and 4.1 ± 0.8 mmHg, respectively, N = 10-14). Pretreatment with losartan and [Sar¹, Ala8] ANG II completely abolished the water and sodium intake, and the pressor increase (0.5 ± 0.2, 1.1 ± 0.2, 0.5 ± 0.2, and 0.8 ± 0.2 ml, and 1.2 ± 3.9, 31 ± 4.6 mmHg, respectively, N = 9-12), whereas losartan blunted the urinary and sodium excretion induced by ANG II (13.9 ± 1.0 ml and 187 ± 10 µEq/120 min, respectively, N = 9). Pretreatment with PD 123319 and [Sar¹, Ala8] ANG II blocked the urinary and sodium excretion (10.7 ± 0.8, 9.8 ± 0.7 ml, and 67 ± 13 and 57 ± 17 µEq/120 min, respectively, N = 9), whereas pretreatment with PD 123319 partially blocked the water and sodium intake, and the MAP induced by ANG II administration (2.3 ± 0.3, 1.1 ± 0.1 ml, and 12 ± 3 mmHg, respectively, N = 9-10). These results suggest the angiotensinergic effect of the MSA on the AT1 and AT2 receptors of the PVN in terms of water and sodium homeostasis and MAP modulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Losartan, an AT1 angiotensin II (ANG II) receptor non-peptide antagonist, induces an increase in mean arterial pressure (MAP) when injected intracerebroventricularly (icv) into rats. The present study investigated possible effector mechanisms of the increase in MAP induced by icv losartan in unanesthetized rats. Male Holtzman rats (280-300 g, N = 6/group) with a cannula implanted into the anterior ventral third ventricle received an icv injection of losartan (90 µg/2 µl) that induced a typical peak pressor response within 5 min. In one group of animals, this response to icv losartan was completely reduced from 18 ± 1 to 4 ± 2 mmHg by intravenous (iv) injection of losartan (2.5-10 mg/kg), and in another group, it was partially reduced from 18 ± 3 to 11 ± 2 mmHg by iv prazosin (0.1-1.0 mg/kg), an alpha1-adrenergic antagonist (P<0.05). Captopril (10 mg/kg), a converting enzyme inhibitor, injected iv in a third group inhibited the pressor response to icv losartan from 24 ± 3 to 7 ± 2 mmHg (P<0.05). Propranolol (10 mg/kg), a ß-adrenoceptor antagonist, injected iv in a fourth group did not alter the pressor response to icv losartan. Plasma renin activity and serum angiotensin-converting enzyme activity were not altered by icv losartan in other animals. The results suggest that the pressor effect of icv losartan depends on angiotensinergic and alpha1-adrenoceptor activation, but not on increased circulating ANG II.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pregnancy is a physiological condition characterized by a progressive increase of the different components of the renin-angiotensin system (RAS). The physiological consequences of the stimulated RAS in normal pregnancy are incompletely understood, and even less understood is the question of how this system may be altered and contribute to the hypertensive disorders of pregnancy. Findings from our group have provided novel insights into how the RAS may contribute to the physiological condition of pregnancy by showing that pregnancy increases the expression of both the vasodilator heptapeptide of the RAS, angiotensin-(1-7) [Ang-(1-7)], and of a newly cloned angiotensin converting enzyme (ACE) homolog, ACE2, that shows high catalytic efficiency for Ang II metabolism to Ang-(1-7). The discovery of ACE2 adds a new dimension to the complexity of the RAS by providing a new arm that may counter-regulate the activity of the vasoconstrictor component, while amplifying the vasodilator component. The studies reviewed in this article demonstrate that Ang-(1-7) increases in plasma and urine of normal pregnant women. In preeclamptic subjects we showed that plasma Ang-(1-7) was suppressed as compared to the levels found in normal pregnancy. In addition, kidney and urinary levels of Ang-(1-7) were increased in pregnant rats coinciding with the enhanced detection and expression of ACE2. These findings support the concept that in normal pregnancy enhanced ACE2 may counteract the elevation in tissue and circulating Ang II by increasing the rate of conversion to Ang-(1-7). These findings provide a basis for the physiological role of Ang-(1-7) and ACE2 during pregnancy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Diseases such as hypertension, atherosclerosis, hyperlipidemia, and diabetes are associated with vascular functional and structural changes including endothelial dysfunction, altered contractility and vascular remodeling. Cellular events underlying these processes involve changes in vascular smooth muscle cell (VSMC) growth, apoptosis/anoikis, cell migration, inflammation, and fibrosis. Many factors influence cellular changes, of which angiotensin II (Ang II) appears to be amongst the most important. The physiological and pathophysiological actions of Ang II are mediated primarily via the Ang II type 1 receptor. Growing evidence indicates that Ang II induces its pleiotropic vascular effects through NADPH-driven generation of reactive oxygen species (ROS). ROS function as important intracellular and intercellular second messengers to modulate many downstream signaling molecules, such as protein tyrosine phosphatases, protein tyrosine kinases, transcription factors, mitogen-activated protein kinases, and ion channels. Induction of these signaling cascades leads to VSMC growth and migration, regulation of endothelial function, expression of pro-inflammatory mediators, and modification of extracellular matrix. In addition, ROS increase intracellular free Ca2+ concentration ([Ca2+]i), a major determinant of vascular reactivity. ROS influence signaling molecules by altering the intracellular redox state and by oxidative modification of proteins. In physiological conditions, these events play an important role in maintaining vascular function and integrity. Under pathological conditions ROS contribute to vascular dysfunction and remodeling through oxidative damage. The present review focuses on the biology of ROS in Ang II signaling in vascular cells and discusses how oxidative stress contributes to vascular damage in cardiovascular disease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sex differences in the development of hypertension and cardiovascular disease have been described in humans and in animal models. In this paper we will review some of our studies which have as their emphasis the examination of the role of sex differences and sex steroids in modulating the central actions of angiotensin II (ANG II) via interactions with free radicals and nitric oxide, generating pathways within brain circumventricular organs and in central sympathomodulatory systems. Our studies indicate that low-dose infusions of ANG II result in hypertension in wild-type male mice but not in intact wild-type females. Furthermore, we have demonstrated that ANG II-induced hypertension in males is blocked by central infusions of the androgen receptor antagonist, flutamide, and by central infusions of the superoxide dismutase mimetic, tempol. We have also found that, in comparison to females, males show greater levels of intracellular reactive oxygen species in circumventricular organ neurons following long-term ANG II infusions. In female mice, ovariectomy, central blockade of estrogen receptors or total knockout of estrogen a receptors augments the pressor effects of ANG II. Finally, in females but not in males, central blockade of nitric oxide synthase increases the pressor effects of ANG II. Taken together, these results suggest that sex differences and estrogen and testosterone play important roles in the development of ANG II-induced hypertension.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Angiotensin II (Ang II) plays a crucial role in the pathogenesis of renal diseases. The objective of the present study was to investigate the possible inflammatory effect of Ang II on glomerular endothelial cells and the underlying mechanism. We isolated and characterized primary cultures of rat glomerular endothelial cells (GECs) and observed that Ang II induced the synthesis of monocyte chemoattractant protein-1 (MCP-1) in GECs as demonstrated by Western blot. Ang II stimulation, at concentrations ranging from 0.1 to 10 µm, of rat GECs induced a rapid increase in the generation of reactive oxygen species as indicated by laser fluoroscopy. The level of p47phox protein, an NAD(P)H oxidase subunit, was also increased by Ang II treatment. These effects of Ang II on GECs were all reduced by diphenyleneiodonium (1.0 µm), an NAD(P)H oxidase inhibitor. Ang II stimulation also promoted the activation of nuclear factor-kappa B (NF-κB). Telmisartan (1.0 µm), an AT1 receptor blocker, blocked all the effects of Ang II on rat GECs. These data suggest that the inhibition of NAD(P)H oxidase-dependent NF-κB signaling reduces the increase in MCP-1 production by GECs induced by Ang II. This may provide a mechanistic basis for the benefits of selective AT1 blockade in dealing with chronic renal disease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Angiotensin II (ANG II), the main effector of the renin-angiotensin system, is implicated in endothelial permeability, recruitment and activation of the immune cells, and also vascular remodeling through induction of inflammatory genes. Matrix metalloproteinases (MMPs) are considered to be important inflammatory factors. Elucidation of ANG II signaling pathways and of possible cross-talks between their components is essential for the development of efficient inhibitory medications. The current study investigates the inflammatory signaling pathways activated by ANG II in cultures of human monocytic U-937 cells, and the effects of specific pharmacological inhibitors of signaling intermediates on MMP-9 gene (MMP-9) expression and activity. MMP-9 expression was determined by real-time PCR and supernatants were analyzed for MMP-9 activity by ELISA and zymography methods. A multi-target ELISA kit was employed to evaluate IκB, NF-κB, JNK, p38, and STAT3 activation following treatments. Stimulation with ANG II (100 nM) significantly increased MMP-9 expression and activity, and also activated NF-κB, JNK, and p38 by 3.8-, 2.8- and 2.2-fold, respectively (P < 0.01). ANG II-induced MMP-9 expression was significantly reduced by 75 and 67%, respectively, by co-incubation of the cells with a selective inhibitor of protein kinase C (GF109203X, 5 µM) or of rho kinase (Y-27632, 15 µM), but not with inhibitors of phosphoinositide 3-kinase (wortmannin, 200 nM), tyrosine kinases (genistein, 100 µM) or of reactive oxygen species (α-tocopherol, 100 µM). Thus, protein kinase C and Rho kinase are important components of the inflammatory signaling pathways activated by ANG II to increase MMP-9 expression in monocytic cells. Both signaling molecules may constitute potential targets for effective management of inflammation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neurogenic hypertension has been the subject of extensive research worldwide. This review is based on the premise that some forms of neurogenic hypertension are caused in part by the formation of angiotensin-II (Ang-II)-induced reactive oxygen species along the subfornical organ-paraventricular nucleus of the hypothalamus-rostral ventrolateral medulla pathway (SFO-PVN-RVLM pathway). We will discuss the recent contribution of our laboratory and others regarding the mechanisms by which neurons in the SFO (an important circumventricular organ) are activated by Ang-II, how the SFO communicates with two other important areas involved in sympathetic activity regulation (PVN and RVLM) and how Ang-II-induced reactive oxygen species participate along the SFO-PVN-RVLM pathway in the pathogenesis of neurogenic hypertension.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The classical renin-angiotensin system (RAS) consists of enzymes and peptides that regulate blood pressure and electrolyte and fluid homeostasis. Angiotensin II (Ang II) is one of the most important and extensively studied components of the RAS. The beneficial effects of angiotensin converting enzyme (ACE) inhibitors in the treatment of hypertension and heart failure, among other diseases, are well known. However, it has been reported that patients chronically treated with effective doses of these inhibitors do not show suppression of Ang II formation, suggesting the involvement of pathways alternative to ACE in the generation of Ang II. Moreover, the finding that the concentration of Ang II is preserved in the kidney, heart and lungs of mice with an ACE deletion indicates the important role of alternative pathways under basal conditions to maintain the levels of Ang II. Our group has characterized the serine protease elastase-2 as an alternative pathway for Ang II generation from Ang I in rats. A role for elastase-2 in the cardiovascular system was suggested by studies performed in heart and conductance and resistance vessels of normotensive and spontaneously hypertensive rats. This mini-review will highlight the pharmacological aspects of the RAS, emphasizing the role of elastase-2, an alternative pathway for Ang II generation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Angiotensin II (Ang II) plays an important role in cardiomyocyte hypertrophy. The combined effect of hepatocyte growth factor (HGF) and Ang II on cardiomyocytes is unknown. The present study was designed to determine the effect of HGF on cardiomyocyte hypertrophy and to explore the combined effect of HGF and Ang II on cardiomyocyte hypertrophy. Primary cardiomyocytes were isolated from neonatal rat hearts and cultured in vitro. Cells were treated with Ang II (1 µM) alone, HGF (10 ng/mL) alone, and Ang II (1 µM) plus HGF (10 ng/mL) for 24, 48, and 72 h. The amount of [³H]-leucine incorporation was then measured to evaluate protein synthesis. The mRNA levels of β-myosin heavy chain and atrial natriuretic factor were determined by real-time PCR to evaluate the presence of fetal phenotypes of gene expression. The cell size of cardiomyocytes was also studied. Ang II (1 µM) increased cardiomyocyte hypertrophy. Similar to Ang II, treatment with 1 µM HGF promoted cardiomyocyte hypertrophy. Moreover, the combination of 1 µM Ang II and 10 ng/mL HGF clearly induced a combined pro-hypertrophy effect on cardiomyocytes. The present study demonstrates for the first time a novel, combined effect of HGF and Ang II in promoting cardiomyocyte hypertrophy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Ang II plays a major role in cardiovascular regulation. Recently, it has become apparent that vascular superoxide anion may play an important role in hypertension development. Treatment with antisense NAD(P)H oxidase or SOD decreased BP in Ang II-infused rats. Wang et al recently reported mice which lack one of the subunits of NAD(P)H oxidase developed hypertension at a much lower extent when compared to the wild type animals infused with Ang II, indicating that superoxide anion contributes to elevation in BP in the Ang II-infused hypertensive model. In the Ang II-infused hypertensive model, altered reactivity of blood vessels is often associated with the elevation of systolic blood pressure. We have observed abnormal tension development and impaired endothelium-dependent relaxation in the isolated aorta of Ang II-infused and DOCA-salt hypertensive rats. Recently, several other cellular signal molecules, including ERK1I2 and PI3K, have been determined to play important roles in the regulation of smooth muscle contraction and relaxation. ERKl/2 and PI3K pathways are also reported to contribute to Ang II induced cell growth, hypertrophy, remodeling and contraction. Moreover, these signaling pathways have shown ROS-sensitive properties. Therefore, the aim of the present study is to investigate the roles of ERKl12 and PI3K in vascular oxidative stress, spontaneous tone and impaired endothelium relaxation in Ang II-infused hypertensive model. Hypothesis: We hypothesize that the activation of ERKl12 and PI3K are elevated in response to an Ang II infusion for 6 days. The elevated activation of phospho-ERKl/2 and PI3K mediated the increased level of vascular superoxide anion, the abnormal vascular contraction and impaired endothelium-dependent vascular relaxation in Ang II-infused hypertensive rats. Methods: Vascular superoxide anion level is measured by lucigenin chemiluminescence. Spontaneous tone and ACh-induced endothelium-dependent relaxation was measured by isometric tension recording in organ chamber. The activity of ERK pathway will be measured by its Western blot of phosphorylation of ERK. PI3K activity was evaluated indirectly by Western blot of the phosphorylation of PDKl, a downstream protein of PI3K signaling pathway. The role of each pathway was also addressed via comparing the responses to the specific inhibitors. Results: Superoxide anion was markedly increased in the isolated thoracic aorta from Ang II-infused rats. There was spontaneous tone developed in rings from Ang II-induced hypertensive but not sham-operated normotensive rats. ACh-induced endothelium-dependent relaxation function is impaired in Ang II-infused hypertensive rats. Superoxide dismutase and NAD(P)H oxidase inhibitor, apocynin, inhibited the abnormal spontaneous tone and ameliorated impaired endothelium-dependent relaxation. The expression of phopho-ERKII2 was enhanced in Ang II-infused rats, indicating the activity of ERK1I2 could be increased. MEK1I2 inhibitors, PD98059 and U126, but not their inactive analogues, SB203580 and U124, significantly reduced the vascular superoxide anion in aortas from Ang II-infused rats. The MEK1I2 inhibitors reduced the spontaneous tone and improved the impaired endothelium-dependent relaxation in aorta of hypertension. These findings supported the role of ERKII2 signaling pathway in vascular oxidative stress, spontaneous tone and impaired endothelium-dependent relaxation in Ang II-infused hypertensive rats. The amount of phospho-PDK, a downstream protein of PI3K was increased in Ang II rats indicating the activity of PI3K activity was elevated. Strikingly, PI3K significantly inhibited the increase of superoxide anion level, abnormal spontaneous tone and restored endothelium-dependent relaxation in Ang II-infused hypertensive rats. These findings indicated the important role of PI3K in Ang II-infused hypertensive rats. Conclusion: ERKII2 and PI3K signaling pathways are sustained activated in Ang II-infused hypertensive rats. The activated ERKII2 and PI3K mediate the increase of vascular superoxide anion level, vascular abnormal spontaneous tone and impaired endothelium-dependent relaxation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Affiliation: Faculté de pharmacie, Université de Montréal & Institut de recherches cliniques de Montréal