985 resultados para ANDROGEN RECEPTOR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A group of α-lipoic acid N-phenylamides were synthesized employing a variety of amide coupling protocols utilizing electron deficient anilines. These compounds were then assessed for their ability to block androgen-stimulated proliferation of a human prostate cancer cell line, LNCaP. These structurally simple compounds displayed anti-proliferative activities at, typically, 5–20 μM concentrations and were comparable to a commonly used anti-androgen Bicalutamide®. The inclusion of a disulfide (RS-SR) moiety, serving as an anchor to several metal nanoparticle systems (Au, Ag, Fe2O3, etc.), does not impede any biological activity. Conjugation of these compounds to a gold nanoparticle surface resulted in a high degree of cellular toxicity, attributed to the absence of a biocompatible group such as PEG within the organic scaffold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A range of 1,4-substituted-1,2,3-N-phenyltriazoles were synthesized and evaluated as non-steroidal androgen receptor (AR) antagonists. The motivation for this study was to replace the N-phenyl amide portion of small molecule antiandrogens with a 1,2,3-triazole and determine effects, if any, on biological activity. The synthetic methodology presented herein is robust, high yielding and extremely rapid. Using this methodology a series of 17 N-aryl triazoles were synthesized from commercially available starting materials in less than 3h. After preliminary biological screening at 20 and 40 μM, the most promising three compounds were found to display IC50 values of 40-50 μM against androgen dependent (LNCaP) cells and serve as a starting point for further structure-activity investigations. All compounds in this work were the focus of an in silico study to dock the compounds into the human androgen receptor ligand binding domain (hARLBD) and compare their predicted binding affinity with known antiandrogens. A comparison of receptor-ligand interactions for the wild type and T877A mutant AR revealed two novel polar interactions. One with Q738 of the wild type site and the second with the mutated A877 residue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A versatile and high yielding synthesis of novel androgen receptor (AR) antagonists is presented. Using this methodology, six 1,4-substituted-1,2,3-triazole derived bicalutamide mimics were synthesised in five steps and in isolated overall yields from 41% to 85%. Evaluation of these compounds for their anti-proliferative properties against androgen dependent (LNCaP) and independent (PC-3) cells showed promising IC50 values of 34-45 μM and 29-151 μM, respectively. The data suggest that the latter compounds may be an excellent starting point for the development of prostate cancer therapeutics for both androgen dependent and independent forms of this disease. Docking of these compounds (each enantiomer) in silico into the T877A mutated androgen receptor, as possessed by LNCaP cells, was also undertaken.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The normal growth, differentiation and maintenance of the morphofunctional integrity of the prostate gland are dependent on the interaction of constant levels of androgens with their receptors. The need to study the responses to hormones under several conditions and the effect of their blockage is due to the fact that the human prostate is the site of a great number of age-related diseases, and the ones with a major medical importance are prostate cancer (Cap) and benign prostatic hyperplasia (BPH), which can both be treated with androgen suppression. Seventy-five male gerbils were divided, randomly, into 3 groups of 25 animals each, where each group corresponded to one phase of postnatal development. In each phase, it was possible to morphologically and stereologically analyze the compartments of prostatic ventral lobe, as well as to immunohistochemically analyze the degree of expression of androgen receptors (ARs) after the androgen blockage therapies. In addition, it was possible to establish the hormonal dosage of serum testosterone levels given the comparative approach of the expression of androgen receptors. There is a pattern of AR distribution in the prostatic ventral lobe throughout postnatal development, in which the younger the animal is the higher, the interaction of circulating androgens that stimulate the AR expression in both the epithelial and stromal compartments. The androgen blockage therapies decreased AR expression in the prostatic compartments, but the androgen reposition after these blockages was not sufficient to recover the glandular structure or stimulate the AR expression up to normal physiological conditions. Both the regulation and distribution of androgen receptors along the gerbil prostatic tissues are complex mechanisms that are likely to be genetically regulated by androgens prenatally or by other factors that are still unknown. This rodent species seems to be a valuable model in the attempt to improve the understanding of the morphophysiological and pathological behavior of this important gland in humans throughout aging and to stimulate new therapeutic ideas to fight prostate cancer. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The observation that mice with a selective ablation of the androgen receptor (AR) in Sertoli cells (SC) (SCARKO mice) display a complete block in meiosis supports the contention that SC play a pivotal role in the control of germ cell development by androgens. To delineate the physiological and molecular mechanism responsible for this control, we compared tubular development in pubertal SCARKO mice and littermate controls. Particular attention was paid to differences in SC maturation, SC barrier formation and cytoskeletal organization and to the molecular mediators potentially involved. Functional analysis of SC barrier development by hypertonic perfusion and lanthanum permeation techniques and immunohistochemical analysis of junction formation showed that SCARKO mice still attempt to produce a barrier separating basal and adluminal compartment but that barrier formation is delayed and defective. Defective barrier formation was accompanied by disturbances in SC nuclear maturation (immature shape, absence of prominent, tripartite nucleoli) and SC polarization (aberrant positioning of SC nuclei and cytoskeletal elements such as vimentin). Quantitative RT-PCR was used to study the transcript levels of genes potentially related to the described phenomena between day 8 and 35. Differences in the expression of SC genes known to play a role in junction formation could be shown from day 8 for Cldn11, from day 15 for Cldn3 and Espn, from day 20 for Cdh2 and Jam3 and from day 35 for ZO-1. Marked differences were also noted in the transcript levels of several genes that are also related to cell adhesion and cytoskeletal dynamics but that have not yet been studied in SC (Actn3, Ank3, Anxa9, Scin, Emb, Mpzl2). It is concluded that absence of a functional AR in SC impedes the remodeling of testicular tubules expected at the onset of spermatogenesis and interferes with the creation of the specific environment needed for germ cell development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] The exon-1 of the androgen receptor (AR) gene contains two repeat length polymorphisms which modify either the amount of AR protein inside the cell (GGN(n), polyglycine) or its transcriptional activity (CAG(n), polyglutamine). Shorter CAG and/or GGN repeats provide stronger androgen signalling and vice versa. To test the hypothesis that CAG and GGN repeat AR polymorphisms affect muscle mass and various variables of muscular strength phenotype traits, the length of CAG and GGN repeats was determined by PCR and fragment analysis and confirmed by DNA sequencing of selected samples in 282 men (28.6 +/- 7.6 years). Individuals were grouped as CAG short (CAG(S)) if harbouring repeat lengths of 21. GGN was considered short (GGN(S)) or long (GGN(L)) if GGN 23, respectively. No significant differences in lean body mass or fitness were observed between the CAG(S) and CAG(L) groups, or between GGN(S) and GGN(L) groups, but a trend for a correlation was found for the GGN repeat and lean mass of the extremities (r=-0.11, p=0.06). In summary, the lengths of CAG and GGN repeat of the AR gene do not appear to influence lean mass or fitness in young men.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] BACKGROUND: To determine whether androgen receptor (AR) CAG (polyglutamine) and GGN (polyglycine) polymorphisms influence bone mineral density (BMD), osteocalcin and free serum testosterone concentration in young men. METHODOLOGY/PRINCIPAL FINDINGS: Whole body, lumbar spine and femoral bone mineral content (BMC) and BMD, Dual X-ray Absorptiometry (DXA), AR repeat polymorphisms (PCR), osteocalcin and free testosterone (ELISA) were determined in 282 healthy men (28.6+/-7.6 years). Individuals were grouped as CAG short (CAG(S)) if harboring repeat lengths of < or = 21 or CAG long (CAG(L)) if CAG > 21, and GGN was considered short (GGN(S)) or long (GGN(L)) if GGN < or = 23 or > 23. There was an inverse association between logarithm of CAG and GGN length and Ward's Triangle BMC (r = -0.15 and -0.15, P<0.05, age and height adjusted). No associations between CAG or GGN repeat length and regional BMC or BMD were observed after adjusting for age. Whole body and regional BMC and BMD values were similar in men harboring CAG(S), CAG(L), GGN(S) or GGN(L) AR repeat polymorphisms. Men harboring the combination CAG(L)+GGN(L) had 6.3 and 4.4% higher lumbar spine BMC and BMD than men with the haplotype CAG(S)+GGN(S) (both P<0.05). Femoral neck BMD was 4.8% higher in the CAG(S)+GGN(S) compared with the CAG(L)+GGN(S) men (P<0.05). CAG(S), CAG(L), GGN(S), GGN(L) men had similar osteocalcin concentration as well as the four CAG-GGN haplotypes studied. CONCLUSION: AR polymorphisms have an influence on BMC and BMD in healthy adult humans, which cannot be explained through effects in osteoblastic activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triple negative breast cancer (TNBC) is a very aggressive tumor subtype characterized by the lack of expression of estrogen receptor 1 (ESR1), due in the most of cases to an increased expression of DNA methyltransferases (DNMTs) and hypermethylation in CpG islands, resulting in gene silencing. Furthermore, in ESR1- negative breast cancers, androgen receptor (AR) is highly expressed and some studies suggest that it can drive tumor progression and might represent a therapeutic target. A correlation between microRNAs, small non-coding RNAs that regulate gene expression, and DNMTs was investigated in a TNBC cell line to restore a normal methylation pattern of ESR1, leading to its re-expression and conferring again sensitivity to selective estrogen receptor modulators (SERMs). miR-148A and miR-29B were found to be involved in the reduction of the expression of DNMT1 and DNMT3A and in a slight increase of ESR1 expression, but not at protein level. Then, we found a down-regulation of AR by miRs-7, -9, -27a, -27b, -29a, -29b, -29c, -127-3p, -127-5p and -376 at 48h post transfection and an up-regulation by miR-15a and miR-16 at every time considered. We concomitantly investigated a possible increase of Tamoxifen, Herceptin and Metformin sensitivity after AR silencing in MDA-MB 453 and T-47D cell lines. Cells seemed more sensitive when silenced for AR only in MDA-MB-453 at 24h post Tamoxifen treatment. Studies on Metformin have basically confirmed an increase of drug sensitivity due to AR silencing in both cell lines. Analysis of Herceptin showed how MDA-MB 453 samples silenced for AR have a slight decrease in the percentage of proliferating cells, demonstrating a possible increase in the response to treatment. These preliminary data provide the basis for further study of the modulation of the expression of AR by microRNAs and it will be interesting to understand the molecular mechanisms underlying these interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuroendocrine differentiation is a hallmark of prostate cancer. The aim of our study was the detection of the parallel expression of neuroendocrine related markers using a prostate tissue microarray (TMA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with advanced prostate cancer (PC) are usually treated with androgen withdrawal. While this therapy is initially effective, nearly all PCs become refractory to it. As hormone receptors play a crucial role in this process, we constructed a tissue microarray consisting of PC samples from 107 hormone-naïve (HN) and 101 castration-resistant (CR) PC patients and analyzed the androgen receptor (AR) gene copy number and the protein expression profiles of AR, Serin210-phosphorylated AR (pAR(210)), estrogen receptor (ER)β, ERα and the proliferation marker Ki67. The amplification of the AR gene was virtually restricted to CR PC and was significantly associated with increased AR protein expression (P<0.0001) and higher tumor cell proliferation (P=0.001). Strong AR expression was observed in a subgroup of HN PC patients with an adverse prognosis. In contrast, the absence of AR expression in CR PC was significantly associated with a poor overall survival. While pAR(210) was predominantly found in CR PC patients (P<0.0001), pAR(210) positivity was observed in a subgroup of HN PC patients with a poor survival (P<0.05). Epithelial ERα expression was restricted to CR PC cells (9%). ERβ protein expression was found in 38% of both HN and CR PCs, but was elevated in matched CR PC specimens. Similar to pAR(210), the presence of ERβ in HN patients was significantly associated with an adverse prognosis (P<0.005). Our results strongly suggest a major role for pAR(210) and ERβ in HN PC. The expression of these markers might be directly involved in CR tumor growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Astrogliosis is induced by neuronal damage and is also a pathological feature of the major aging-related neurodegenerative disorders. The mechanisms that control the cascade of astrogliosis have not been well established. In a previous study, we identified a novel androgen receptor (AR)-interacting protein (p44/WDR77) and found that it plays a critical role in the control of proliferation and differentiation of prostate epithelial cells. In the present study, we found that deletion of the p44 gene in the mouse brain caused accelerated aging with dramatic astrogliosis. The p44/WDR77 is expressed in astrocytes and loss of p44/WDR77 expression in astrocytes leads to astrogliosis. Our results reveal a novel role of p44/WDR77 in astrocytes, which may explain the well-documented role of androgens in suppression of astrogliosis. While many of detailed mechanisms of astrocyte activation remain to be elucidated, a number pathways have been implicated in astrocyte activation including p21Cip1 and the NF-kB pathway. Astrocytic activation induced by p44/WDR77 gene deletion was associated with a significant increase of p21Cip1 expression and NF-kB activation characterized by p65 nuclear localization. We found that down-regulation of p21Cip1 expression inhibited astrocyte activation induced by the p44/WDR77 deletion and was accompanied by a decreased p65 nuclear localization. While p21Cip1 role in astrocyte activation and NF-kB activation is not well understood, studies of other cell cycle regulators have implicated cell cycle control systems as modulators of astrocyte activation, thus p21Cip1 could induce secondary effect to induce p65 nuclear localization. However, p65 knockdown completely relieved the inhibition of astrocyte growth induced by the p44/WDR77 deletion, while p21Cip1 knockdown only partially recovered this inhibition. Thus, NF-kB activity performs additional regulatory actions not mediated by p21Cip1. These analyses imply that p4/WDR77 suppresses astrocyte activation through modulating p21Cip1 expression and NF-kB activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously reported androgen receptor concentrations in rat testis and testicular cell types have varied widely. In the studies reported here a nuclear exchange assay was established in rat testis in which exchange after 86 hours at 4$\sp\circ$C was greater than 85% complete and receptor was stable. Receptor concentration per DNA measured by exchange declined between 15 and 25 days of age in the rat testis, then increased 4-fold during sexual maturation. Proliferation of germ cells which had low receptor concentration appeared to account for the early decline in testicular receptor concentration, whereas increase in receptor number per Sertoli cell between 25 and 35 days of age contributed to the later increase. Increase in Leydig cell number during maturation appeared to account for the remainder of the increase due to the high receptor concentration in these cells. Detailed studies showed that other possible explanations for changes in receptor number (e.g. shifts in receptor concentration between the cytosol and nuclear subcellular compartments or changes in the affinity of the receptor for its ligands) were not likely.^ Androgen receptor dynamics in testicular cells showed rapid, specific uptake of ($\sp3$H) -testosterone that was easily blocked by unlabeled testosterone (RA of 7 nM in both cell types), and medroxyprogesterone acetate (RA of 28 and 16 nM in Sertoli and peritubular cells, respectively), but not as well by the anti-androgens cyproterone acetate (RA of 116 and 68 nM) and hydroxyflutamide (RA of 300 and 180 nM). The affinity of the receptor for the ligand dimethylnortestosterone was similar in the two cell types (K$\rm\sb{d}$ values of 0.78 and 0.71 nM for Sertoli and peritubular cells) and was virtually identical with the affinity of the whole testis receptor (0.89 nM). Medroxyprogesterone acetate and testosterone significantly increased nuclear androgen receptor concentration relative to untreated controls in Sertoli and peritubular cells, whereas hydroxyflutamide and cyproterone acetate did not. Despite the different embryological origins of peritubular and Sertoli cells, their responses to both androgens and anti-androgens were similar. In addition, these studies suggest that peritubular cells are as likely as Sertoli cells to be primary androgen targets. ^