1000 resultados para ALPHA-OLEFIN POLYMERIZATION


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of new titanium complexes bearing two regioisomeric trifluoromethyl-containing enaminoketonato ligands (3a-h and 6a-h), [PhN=CRCHC(CF3)O](2)TiCl2 (3a, R = Me; 3b, R = n-C5H11; 3c, R = i-Pr; 3d, R = Cy; 3e, R = t-Bu; 3f, R = CH=CHPh; 3g, R = Et; 3h, R = n-C11H23) and [PhN=C(CF3)CHC(R)O](2)TiCl2 (6a, R = Ph; 6b, R = n-C5H11; 6c, R = i-Pr; 6d, R = Cy; 6e, R = t-Bu; 6f, R = CH=CHPh; 6g, R = CHPh2; 6h, R = CF3) have been synthesized and characterized. X-ray crystal structures analyses suggest that complexes 3c-e and 6c-d all adopt a distorted octahedral geometry around the titanium center. Complexes 3c, 3d and 6c display a cis-configuration of the two chlorine atoms around the titanium center, while complex 6d shows a trans-configuration of the two chlorine atoms. Especially, the configurational isomers (cis and trans) of complex 3e were identified both in solution and in the solid state by NMR and X-ray analyses. With modified methylaluminoxane as a cocatalyst, all the complexes are active towards ethylene polymerization, and produce high molecular weight polymers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The N,N-bidentate ligand 2-{(N-2,6-diisopropylphenyl)iminomethyl)}pyrrole (L-1) and the N,N,P-tridentate ligand 2-{(N-2-diphenylphosphinophenyl)iminomethyl)}pyrrole (L-2) have been prepared. Their reactions with homoleptic yttrium tris(alkyl) compound Y(CH2SiMe3)(3)(THF)(2) have been investigated. Treatment of Y(CH2SiMe3)(3)(THF)(2) with 1 equiv of L-1 generated a THF-solvated bimetallic (pyrrolylaldiminato)yttrium mono(alkyl) complex (1) of central symmetry. In this process, L-1 is deprotonated by metal alkyl and its imino CN group is reduced to C-N by intramolecular alkylation, generating dianionic species that bridge two yttrium alkyl units in a unique eta(5)/eta(1):kappa(1) mode. The pyrrolyl ring behaves as a heterocyclopentadienyl ligand. Reaction of Y(CH2SiMe3)(3)(THF)(2) with 2 equiv of L-1 afforded the monomeric bis(pyrrolylaldiminato)yttrium mono(alkyl) complex (2), selectively. Amination of 2 with 2,6-diisopropylaniline gave the corresponding yttrium amido complex (3). In 3 the pyrrolide ligand is monoanionic and bonds to the yttrium atom in a eta(1):kappa(1) mode. The homoleptic tris(eta(1):kappa(1)-pyrrolylaldiminato)yttrium complex (4) was isolated when the molar ratio of L-1 to Y(CH2SiMe3)(3)(THF)(2) increases to 3:1. Reaction of L-2 with equimolar Y(CH2SiMe3)(3)(THF)(2) afforded an asymmetric binuclear complex (5).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The strong polar group, carboxylic acid, has triumphantly been introduced into ethylene and allylbenzene copolymers without obvious degradation or crosslinking via Friedel-Crafts (F-C) acylation reaction with glutaric anhydride (GA), succinic anhydride (SA) and phthalic anhydride (PA) in the presence of anhydrous aluminum chloride in carbon disulfide. Some important reaction parameters were examined in order to optimize the acylation process. In the optimum reaction conditions, almost all of the phenyls can be acylated with any anhydride. The microstructure of acylated copolymer was characterized by Fr-IR, H-1 NMR and H-1-H-1 COSY. All the peaks of acylated copolymers can be accurately attributed, which indicates that all the acylation reactions occur only at the para-positions of the substituent of the aromatic rings. The thermal behavior was studied by differential scanning calorimetry (DSC), showing that the melting temperatures (T(m)s) of acylated copolymers with GA firstly decrease slowly and then increase significantly with the increase of the amount of carboxyl acid groups.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Macroporous and modified macroporous poly(styrene-co-methyl methacrylate-co-divinylbenzene) particles (m-PS and mm-PS) supported Cp2ZrCl2 were prepared and applied to ethylene polymerization using methylaluminoxane (MAO) as cocatalyst. The influences of the swelling response of the support particles on the catalyst loading capabilities of the supports as well as on the activities of the supported catalysts were studied. It was shown that the Zr loadings of the supports and the activities of the supported catalysts increased with the swelling extent of the support particles. The m-PS or mm-PS supported catalysts exhibited very high activities when the support particles were well swollen, whereas those catalysts devoid of swelling treatment gave much lower activities. Investigation on the distribution of the supports in the polyethylene by TEM indicated that the swelling of the support particles allowed the fragmentation of the catalyst particles. In contrast, the fragmentation of the support particles with poor swelling was hindered during ethylene polymerization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Four self-immobilized FI catalysts with allyl substituted phenoxy-imine ligands [{4-(CH2=CHCH2O)C6H5N=CH-C6H3(3-tert-C4H9)O}(2) MCl2] (1: M = Ti: 2: M = Zr), [{3-(CH2=CHCH2O)C6H5N=CH-C6H3(3-tert-C4H9)O}(2)MCl2] (3: M = Zr), [{4-(CH2=CHCH2-2,6-(iso-C3H7)(2))C6H5N=CH-C6H3(3,5-(NO2)(2))O}(2)MCl2] (4: M = Zr) have been synthesized and characterized. The molecular structure of 2 has been determined by X-ray crystallographic analysis. The results of ethylene polymerization showed that the self-immobilized titanium (IV) and zirconium (IV) catalysts 1-3 kept high activity for ethylene polymerization and 4 showed no activity. SEM showed the immobilization effect could greatly improve the morphology of polymer particles to afford micron-granula polyolefin as supported catalysts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of ansa-metallocene complexes with an allyl substituted silane bridge [(CH =CHCH2)CH3Si(C5H4)(2)]TiCl2 (1), [(CH2=CHCH2)CH3Si(C9H6)(2)]MCl2 [M = Ti (2), Zr (3), Hf (4)] and [(CH2=CHCH2)CH3Si(C13H8)(2)]ZrCl2 (6) have been synthesized and characterized. The molecular structure of 6 has been determined by X-ray crystallographic analysis. Complexes 1-4, 6 bearing allyl groups have been investigated as self-immobilized catalysts for ethylene polymerization in the presence of MMAO. The results showed that the self-immobilized catalysts 1-4, 6 kept high ethylene polymerization activities of ca. 10(6) g PE mol(-1) M h(-1) and high molecular weight (M-w approximate to 10(5)) of polyethylene.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The synthesis and catalytic activity of lanthanide monoamido complexes supported by a beta-diketiminate ligand are described. Donor solvents, such as DME, can cleave the chloro bridges of the dinuclear beta-diketiminate ytterbium dichloride {[(DIPPh)(2)nacnac]YbCl(mu-Cl)(3)Yb[(DIPPh)(2)nacnac](THF)} (1) [(DIPPh)(2)nacnac = N,N-diisopropylphenyl-2,4-pentanediimine anion] to produce the monomeric complex [(DIPPh)(2)nacnac]YbCl2(DME) (2) in high isolated yield. Complex 2 is a useful precursor for the synthesis of beta-diketiminate-ytterbium monoamido derivatives. Reaction of complex 2 with 1 equiv of LiNPr2i in THF at room temperature, after crystallization in THF/toluene mixed solvent, gave the anionic beta-diketiminate-ytterbium amido complex [(DIPPh)(2)nacnac]Yb(NPr2i)(mu-Cl)(2)Li(THF)(2) (3), while similar reaction of complex 2 with LiNPh2 produced the neutral complex [(DIPPh)(2)nacnac]Yb(NPh2)Cl(THF) (4). Recrystallization of complex 3 from toluene solution at elevated temperature led to the neutral beta-diketiminate-lanthanide amido complex [{(DIPPh)(2)nacnac}Yb(NPr2i)(mu-Cl)](2) (5). The reaction medium has a significant effect on the outcome of the reaction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of chromium(III) complexes LCrCl3 (4a-c) bearing chelating 2,2'-iminodiphenyisulfide ligands [L = (2-ArMeC=NAr)(2)S] was synthesized in good yields from the corresponding ligands and CrCl3.(THF). Using modified methylaluminoxane (MMAO) as a cocatalyst, these complexes display moderate activities towards ethylene polymerization, and produce highly linear polyethylenes with broad molecular weight distribution. Polymer yields, catalyst activities and the molecular weights, as well as the molecular weight distributions of the polymers can be controlled over a wide range by the variation of the structures of the chromium(III) complexes and the polymerization parameters, such as Al/Cr molar ratio, reaction temperature and ethylene pressure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of binuclear neutral nickel and palladium complexes [(XC6H2CH=NC6H3-iPr(2))MRL](2) 4b-f (X=NO2, M=Ni, R=Ph, L=PPh3, 4b; X=H, M=Pd, R=Me, L=PPh3,4c; X=H,M=Pd, R=Me, L=Py, 4d; X=NO2,M=Pd, R=Me, L=PPh3, 4e; X=NO2, M=Pd, R=Me, L=Py, 4f) and [(C10H7CH=NC6H3-iPr(2))MRL](2) 8a-c (M=Ni, R=Ph, L=PPh3, 8a; M=Pd, R=Me, L=PPh3, 8b; M=Pd, R=Me, L=Py, 8c) have been synthesized and characterized. The structures of complexes 4e and 8b have also been confirmed by X-ray crystallographic analysis. With modified methylalummoxane (MMAO) as cocatalysts, these complexes and complex [(C6H3CH=NC6H3-iPr(2))NiPh(PPh3)](2) 4a are capable of catalyzing the addition polymerization of norbomene (NBE) with the high activity up to 2.3 x 10(8) g PNBE/(mol(M) h). The structure of complexes affects considerably catalytic activity towards norbomene polymerization. The polymers obtained with nickel complexes are soluble, while those obtained with palladium complexes are insoluble. Palladium complexes 4c, 4e and 8b bearing PPh3 ligands exhibit much higher activities than the corresponding complexes 4d, M and 8c bearing pyridine ligands under the same conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of new titanium complexes bearing beta-diiminato ligands [(Ph)NC(R-1)CHC(R-2)N(Ph)](2)TiCl2 (4a: R-1 = R-2 = CH3; 4b: R-1 = R-2 = CF3; 4c: R-1 = Ph, R-2 = CH3; 4d: R-1 = Ph, R-2 = CF3) has been synthesized and characterized. X-ray crystal structures reveal that complexes 4a and 4c adopt distorted octahedral geometry around the titanium center. With modified methylaluminoxane (MMAO) as a cocatalyst, complexes 4a-d are active catalysts for ethylene polymerization, and produce high molecular weight polyethylenes. Catalyst activities and the molecular weights of polymers are considerably influenced by the steric and electronic effects of substituents on the catalyst backbone under the same polymerization condition. With the strong electron-withdrawing groups (CF3) at R-1 or/and R-2 position, complexes 4b and 4d show higher activities than complexes 4a and 4c, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of titanium phosphinimide complexes [Ph2P(2-RO-C6H4)(2)TiCl2 (7, R = CH3; 8, R = CHMe2) and (PhP(2-Me2CHOC6H4)][THF]TiCl3 (9) have been prepared by reaction of TiCl4 with the corresponding phosphinimines under dehalosilylation. The structure of complex 9 has been determined by X-ray crystallography, and a solvent molecule THF was found to be coordinated with the central metal and the Ti-O bond was consistent with the normal Ti-O (donor) bond length. The complexes 7 and 8 displayed inactive to ethylene polymerization, and the complex 9 displayed moderate activity in the presence of modified methylaluminoxane (MMAO) or i-BU3Al/Ph3CB(C6F5)(4), and this should be partly attributed to coordination of THF with titanium and the steric effect of two iso-propoxyl. And catalytic activity up to 32.2 kg-PE/(mol-Ti h bar) was observed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Group 4 complexes containing diphosphinoamide ligands [Ph2PNR](2)MCl2 (3: R = Bu-t, M = Ti; 4: R = Bu-t, M = Zr; 5: R = Ph, M = Ti; 6: R = Ph, M = Zr) were prepared by the reaction Of MCl4 (M = Ti; Zr) with the corresponding lithium phosphinoamides in ether or THF. The structure of [(Ph2PNBu)-Bu-t](2)TiCl2 (3) was determined by X-ray crystallography. The phosphinoamides functioned as eta(2)-coordination ligands in the solid state and the Ti-N bond length suggests it is a simple single bond. In the presence of modified methylaluminoxane or i-Bu3Al/Ph3BC(C6F5)(4), catalytic activity of up to 59.5 kg PE/mol cat h bar was observed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A catalyst with porous polystyrene beads supported Cp2ZrCl2 was prepared and tested for ethylene polymerization with methylaluminoxane as a cocatalyst. By comparison, the porous supported catalyst maintained higher activity and produced polyethylene with better morphology than its corresponding solid supported catalyst. The differences between activities of the catalysts and morphologies of the products were reasonably explained by the fragmentation processes of support as frequently observed with the inorganic supported Ziegler-Natta catalysts. Investigation into the distribution of polystyrene in the polyethylene revealed the fact that the porous polystyrene supported catalyst had undergone fragmentation during polymerization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reaction of salts of the 2,5-disubstituted amino-p-benzoquinone bridging ligand (la-e) with trans-bis(triphenylphosphane)phenylnickel(II) chloride results in the binuclear complexes 2a-e, which show high activities for ethylene polymerization without any cocatalysts. High-molecular-weight, moderately branched polyethylene of broad molecular-weight distribution was obtained.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ansa-zirconocene complex with an allyl substituted silane bridge [(CH2=CHCH2)CH3Si(C5H4)(2)]ZrCl2 (1a) has been synthesized and characterized. The molecular structure of la has been determined by X-ray crystallographic analysis. The polymer immobilized metallocene catalyst 1b is prepared by the co-polymerization of la with styrene in the presence of radical initiator. The result of ethylene polymerization showed that the polymer immobilized metallocene catalyst kept high activity for ethylene polymerization and was a potential supported catalyst for olefin polymerization.