987 resultados para AIRBORNE PARTICULATE
Resumo:
Primary biogenic aerosol (PBA) particles account for large proportions of air particulate matter, and they can influence the hydrological cycle and climate as nuclei for water droplets and ice crystals in clouds, fog, and precipitation. Moreover, they can cause or enhance human, animal, and plant diseases. The actual abundance and properties of PBA particles and components in the atmosphere are, however, still poorly understood and quantified. rnIn this study, the identity, diversity, and frequency of occurrence of PBA particles were investigated by DNA analysis. Methods for the extraction, amplification, and analysis of DNA from aerosol filter samples were developed and optimized for different types of organisms, including fungi, bacteria, and plants. The investigations were focused on fungal DNA, and over 2500 sequences were obtained from air samples collected at different locations and climatic zones around the world (tropical, mid-latitude, sub-polar; continental, marine). rnNearly all fungal DNA sequences could be attributed to the phyla of Ascomycota and Basidiomycota. With regard to species richness, the ratio of Basidiomycota to Ascomycota was much higher in continental air samples (~60:40) than in marine air samples (~30:70). Pronounced differences in the relative abundance and seasonal cycles of various groups of fungi were detected in coarse and fine particulate matter from continental air, with more plant pathogens in the coarse and more human pathogens and allergens in the respirable fine particle fraction (<3 µm). The results of this study provide new information and insights into the sources of PBA particles and the interactions of the biosphere with the atmosphere, climate, and public health. rn
Resumo:
Prospective cohort studies have provided evidence on longer-term mortality risks of fine particulate matter (PM2.5), but due to their complexity and costs, only a few have been conducted. By linking monitoring data to the U.S. Medicare system by county of residence, we developed a retrospective cohort study, the Medicare Air Pollution Cohort Study (MCAPS), comprising over 20 million enrollees in the 250 largest counties during 2000-2002. We estimated log-linear regression models having as outcome the age-specific mortality rate for each county and as the main predictor, the average level for the study period 2000. Area-level covariates were used to adjust for socio-economic status and smoking. We reported results under several degrees of adjustment for spatial confounding and with stratification into by eastern, central and western counties. We estimated that a 10 µg/m3 increase in PM25 is associated with a 7.6% increase in mortality (95% CI: 4.4 to 10.8%). We found a stronger association in the eastern counties than nationally, with no evidence of an association in western counties. When adjusted for spatial confounding, the estimated log-relative risks drop by 50%. We demonstrated the feasibility of using Medicare data to establish cohorts for follow-up for effects of air pollution. Particulate matter (PM) air pollution is a global public health problem (1). In developing countries, levels of airborne particles still reach concentrations at which serious health consequences are well-documented; in developed countries, recent epidemiologic evidence shows continued adverse effects, even though particle levels have declined in the last two decades (2-6). Increased mortality associated with higher levels of PM air pollution has been of particular concern, giving an imperative for stronger protective regulations (7). Evidence on PM and health comes from studies of acute and chronic adverse effects (6). The London Fog of 1952 provides dramatic evidence of the unacceptable short-term risk of extremely high levels of PM air pollution (8-10); multi-site time-series studies of daily mortality show that far lower levels of particles are still associated with short-term risk (5)(11-13). Cohort studies provide complementary evidence on the longer-term risks of PM air pollution, indicating the extent to which exposure reduces life expectancy. The design of these studies involves follow-up of cohorts for mortality over periods of years to decades and an assessment of mortality risk in association with estimated long-term exposure to air pollution (2-4;14-17). Because of the complexity and costs of such studies, only a small number have been conducted. The most rigorously executed, including the Harvard Six Cities Study and the American Cancer Society’s (ACS) Cancer Prevention Study II, have provided generally consistent evidence for an association of long- term exposure to particulate matter air pollution with increased all-cause and cardio-respiratory mortality (2,4,14,15). Results from these studies have been used in risk assessments conducted for setting the U.S. National Ambient Air Quality Standard (NAAQS) for PM and for estimating the global burden of disease attributable to air pollution (18,19). Additional prospective cohort studies are necessary, however, to confirm associations between long-term exposure to PM and mortality, to broaden the populations studied, and to refine estimates by regions across which particle composition varies. Toward this end, we have used data from the U.S. Medicare system, which covers nearly all persons 65 years of age and older in the United States. We linked Medicare mortality data to (particulate matter less than 2.5 µm in aerodynamic diameter) air pollution monitoring data to create a new retrospective cohort study, the Medicare Air Pollution Cohort Study (MCAPS), consisting of 20 million persons from 250 counties and representing about 50% of the US population of elderly living in urban settings. In this paper, we report on the relationship between longer-term exposure to PM2.5 and mortality risk over the period 2000 to 2002 in the MCAPS.
Resumo:
There is increasing evidence of a causal link between airborne particles and ill health and this study examined the exposure to both airborne particles and the gas phase contaminants of environmental tobacco smoke (ETS) in a bar. The work reported here utilized concurrent and continuous monitoring using real-time optical scattering personal samplers to record particulate (PM10) concentrations at two internal locations. Very high episodes were observed in seating areas compared with the bar area. A photo-acoustic multi-gas analyser was used to record the gas phases (CO and CO2) at eight different locations throughout the bar and showed little spatial variation. This gave a clear indication of the problems associated with achieving acceptable Indoor Air Quality in a public space and identified a fundamental problem with the simplistic design approach taken to ventilate the space. Both gaseous and particulate concentrations within the bar were below maximum recommended levels although the time-series analysis illustrated the highly episodic nature of this exposure.
Resumo:
Laser Cladding (LC) is an emerging technology which is used both for coating applications as well as near-net shape fabrication. Despite its significant advantages, such as low dilution and metallurgical bond with the substrate, it still faces issues such as process control and repeatability, which restricts the extension to its applications. The following thesis evaluates the LC technology and tests its potential to be applied to reduce particulate matter emissions from the automotive and locomotive sector. The evaluation of LC technology was carried out for the deposition of multi-layer and multi-track coatings. 316L stainless steel coatings were deposited to study the minimisation of geometric distortions in thin-walled samples. Laser power, as well as scan strategy, were the main variables to achieve this goal. The use of constant power, reduction at successive layers, a control loop control system, and two different scan strategies were studied. The closed-loop control system was found to be practical only when coupled with the correct scan strategy for the deposition of thin walls. Three overlapped layers of aluminium bronze were deposited onto a structural steel pipe for multitrack coatings. The effect of laser power, scan speed and hatch distance on the final geometry of coating were studied independently, and a combined parameter was established to effectively control each geometrical characteristic (clad width, clad height and percentage of dilution). LC was then applied to coat commercial GCI brake discs with tool steel. The optical micrography showed that even with preheating, the cracks that originated from the substrate towards the coating were still present. The commercial brake discs emitted airborne particles whose concentration and size depended on the test conditions used for simulation in the laboratory. The contact of LC cladded wheel with rail emitted significantly less ultra-fine particles while maintaining the acceptable values of coefficient of friction.
Resumo:
Below cloud scavenging processes have been investigated considering a numerical simulation, local atmospheric conditions and particulate matter (PM) concentrations, at different sites in Germany. The below cloud scavenging model has been coupled with bulk particulate matter counter TSI (Trust Portacounter dataset, consisting of the variability prediction of the particulate air concentrations during chosen rain events. The TSI samples and meteorological parameters were obtained during three winter Campaigns: at Deuselbach, March 1994, consisting in three different events; Sylt, April 1994 and; Freiburg, March 1995. The results show a good agreement between modeled and observed air concentrations, emphasizing the quality of the conceptual model used in the below cloud scavenging numerical modeling. The results between modeled and observed data have also presented high square Pearson coefficient correlations over 0.7 and significant, except the Freiburg Campaign event. The differences between numerical simulations and observed dataset are explained by the wind direction changes and, perhaps, the absence of advection mass terms inside the modeling. These results validate previous works based on the same conceptual model.
Resumo:
OBJECTIVE: To analyze the impact on human health of exposure to particulate matter emitted from burnings in the Brazilian Amazon region. METHODS: This was an ecological study using an environmental exposure indicator presented as the percentage of annual hours (AH%) of PM2.5 above 80 μg/m3. The outcome variables were the rates of hospitalization due to respiratory disease among children, the elderly and the intermediate age group, and due to childbirth. Data were obtained from the National Space Research Institute and the Ministry of Health for all of the microregions of the Brazilian Amazon region, for the years 2004 and 2005. Multiple regression models for the outcome variables in relation to the predictive variable AH% of PM2.5 above 80 μg/m3 were analyzed. The Human Development Index (HDI) and mean number of complete blood counts per 100 inhabitants in the Brazilian Amazon region were the control variables in the regression analyses. RESULTS: The association of the exposure indicator (AH%) was higher for the elderly than for other age groups (β = 0.10). For each 1% increase in the exposure indicator there was an increase of 8% in child hospitalization, 10% in hospitalization of the elderly, and 5% for the intermediate age group, even after controlling for HDI and mean number of complete blood counts. No association was found between the AH% and hospitalization due to childbirth. CONCLUSIONS: The indicator of atmospheric pollution showed an association with occurrences of respiratory diseases in the Brazilian Amazon region, especially in the more vulnerable age groups. This indicator may be used to assess the effects of forest burning on human health.
Resumo:
The present work has aimed to determine the 16 US EPA priority PAH atmospheric particulate matter levels present in three sites around Salvador, Bahia: (i) Lapa bus station, strongly impacted by heavy-duty diesel vehicles; (ii) Aratu harbor, impacted by an intense movement of goods, and (iii) Bananeira village on Maré Island, a non vehicle-influenced site with activities such as handcraft work and fisheries. Results indicated that BbF (0.130-6.85 ng m-3) is the PAH with highest concentration in samples from Aratu harbor and Bananeira and CRY (0.075-6.85 ng m-3) presented higher concentrations at Lapa station. PAH sources from studied sites were mainly of anthropogenic origin such as gasoline-fueled light-duty vehicles and diesel-fueled heavy-duty vehicles, discharges in the port, diesel burning from ships, dust ressuspension, indoor soot from cooking, and coal and wood combustion for energy production.
Resumo:
The circulation and transport of suspended particulate matter in the Caravelas Estuary are assessed. Nearly-synoptic hourly hydrographic, current (ADCP velocity and volume transport) and suspended particulate matter data were collected during a full semidiurnal spring tide, on the two transects Boca do Tomba and Barra Velha and on longitudinal sections at low and high tide. On the first transect the peak ebb currents (-1.5 ms-1) were almost twice as strong as those of the wider and shallow Barra Velha inlet (-0.80 ms-1) and the peak flood currents were 0.75 and 0.60 ms-1, respectively. Due to the strong tidal currents both inlets had weak vertical salinity stratification and were classified with the Stratification-circulation Diagram as Type 2a (partially mixed-weakly stratified) and Type 1a (well mixed). Volume transports were very close, ranging from -3,500 to 3,100 m³s-1 at the ebb and flood, respectively, with a residual -630 m³s-1. The concentration of the suspended particulate matter was closely related to the tidal variation and decreased landwards from 50 mg.L-1 at the estuary mouth, to 10 mg.L-1 at distances of 9 and 16 km for the low and high tide experiments, respectively. The total residual SPM transport was out of the estuary at rates of -18 tons per tidal cycle.
Resumo:
We introduce the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). CATT-BRAMS is an on-line transport model fully consistent with the simulated atmospheric dynamics. Emission sources from biomass burning and urban-industrial-vehicular activities for trace gases and from biomass burning aerosol particles are obtained from several published datasets and remote sensing information. The tracer and aerosol mass concentration prognostics include the effects of sub-grid scale turbulence in the planetary boundary layer, convective transport by shallow and deep moist convection, wet and dry deposition, and plume rise associated with vegetation fires in addition to the grid scale transport. The radiation parameterization takes into account the interaction between the simulated biomass burning aerosol particles and short and long wave radiation. The atmospheric model BRAMS is based on the Regional Atmospheric Modeling System (RAMS), with several improvements associated with cumulus convection representation, soil moisture initialization and surface scheme tuned for the tropics, among others. In this paper the CATT-BRAMS model is used to simulate carbon monoxide and particulate material (PM(2.5)) surface fluxes and atmospheric transport during the 2002 LBA field campaigns, conducted during the transition from the dry to wet season in the southwest Amazon Basin. Model evaluation is addressed with comparisons between model results and near surface, radiosondes and airborne measurements performed during the field campaign, as well as remote sensing derived products. We show the matching of emissions strengths to observed carbon monoxide in the LBA campaign. A relatively good comparison to the MOPITT data, in spite of the fact that MOPITT a priori assumptions imply several difficulties, is also obtained.
Resumo:
Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D(p)) ranging from 0.03 to 0.10 mu m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC(a), and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC(e)) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D(p) < 2.5 mu m: average 59.8 mu g m(-3)) were higher than coarse aerosols (D(p) > 2.5 mu m: 4.1 mu g m(-3)). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC(e), comprised more than 90% to the total aerosol mass. Concentrations of EC(a) (estimated by thermal analysis with a correction for charring) and BC(e) (estimated by LTM) averaged 5.2 +/- 1.3 and 3.1 +/- 0.8 mu g m(-3), respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption Angstrom exponent of particles in the size range of 0.1 to 1.0 mu m from >2.0 to approximately 1.2. The size-resolved BC(e) measured by the LTM showed a clear maximum between 0.4 and 0.6 mu m in diameter. The concentrations of OC and BC(e) varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.
Resumo:
Biomass burning is an important source of atmospheric Particulate Matter (PM) in Brazil: the burning of forests in the northwest and of sugar cane plantations in the southeast are important examples. The objective of this work is the measurement of the PM emission profile of burning of sugar cane and other characteristic vegetative burning in the region of Sao Carlos-SP/Brazil. Samples of PM(10) and PM(2.5) were collected in different conditions, including small laboratory controlled burnings and real ones. The samples were analysed by X-Ray Fluorescence (XRF) and 14 chemical elements quantified. t-Student tests were performed to compare the obtained profiles, using as a reference a vegetative burn profile taken from the USEPA data bank SPECIATE. All measured profiles presented significant amounts of Cl and K, which are confirmed as tracers of sugar cane foliage burning.
Resumo:
Epiphytic bromeliads have been used as biomonitors of air pollution since they have specialized structures in leaves for absorbing humidity and nutrients available in the atmosphere. Leaves of five bromeliad species were collected in the conservation unit Parque Estadual Ilha do Cardoso, Sao Paulo State, Brazil, and analyzed by INAA. Vriesea carinata was the species showing most accumulation, with the highest mass fractions of K, Na, Rb and Zn. Similar results were previously found for the same species collected in the dense ombrophilous forest. Chemical composition of bromeliads provided an indication of the atmosphere status in the conservation unit.
The effect of the generation and handling in the acquired electrostatic charge in airborne particles
Resumo:
The measurement of the charge distribution in laboratory generated aerosols particles was carried out. Four cases of electrostatic charge acquisition by aerosol particles were evaluated. In two of these cases. the charges acquired by the particles were naturally derived from the aerosol generation procedure itself, without using any additional charging method. Ill the other two cases, a corona charger and an impact charger were utilized as Supplementary methods for charge generation. Two types of aerosol generators were used in the dispersion of particles in the gas Stream: the vibrating orifice generator TSI model 3450 and the rotating plate generator TSI model 3433. In the vibrating orifice generator. a Solution of methylene blue Was used and the generated particles were mono-dispersed. Different mono-aerosols were generated with particle diameters varying from 6.0 x 10(-6) m to 1.4 x 10(-5) m. In the rotating plate generator, a poly-dispersed phosphate rock concentrate with Stokes mean diameter of 1.30 x 10(-6) m and size range between 1.5 x 10(-7) m and 8.0 x 10(-6) m Was utilized as powder material in all tests. In the tests performed with the mono-dispersed particles. the median charges of the particles varied between -3.0 x 10-(16) C and -5.0 x 10(-18) degrees C and a weak dependence between particle size and charge was observed. The particles were predominantly negatively charged. In the tests with the poly-dispersed particles the median charges varied fairly linearly with the particle diameter and were negative. The order of magnitude of the results obtained is in accordance with data reported in the literature. The charge distribution, in this case, was wider, so that an appreciable amount of particles were positively charged. The relative spread of the distribution varied with the charging method. It was also noticed that the corona charger acted very effectively in charging the particles. (C) 2008 Elsevier BY. All rights reserved.
Resumo:
There are several ways of controlling the propagation of a contagious disease. For instance, to reduce the spreading of an airborne infection, individuals can be encouraged to remain in their homes and/or to wear face masks outside their domiciles. However, when a limited amount of masks is available, who should use them: the susceptible subjects, the infective persons or both populations? Here we employ susceptible-infective-recovered (SIR) models described in terms of ordinary differential equations and probabilistic cellular automata in order to investigate how the deletion of links in the random complex network representing the social contacts among individuals affects the dynamics of a contagious disease. The inspiration for this study comes from recent discussions about the impact of measures usually recommended by health public organizations for preventing the propagation of the swine influenza A (H1N1) virus. Our answer to this question can be valid for other eco-epidemiological systems. (C) 2010 Elsevier BM. All rights reserved.
Resumo:
The application of airborne laser scanning (ALS) technologies in forest inventories has shown great potential to improve the efficiency of forest planning activities. Precise estimates, fast assessment and relatively low complexity can explain the good results in terms of efficiency. The evolution of GPS and inertial measurement technologies, as well as the observed lower assessment costs when these technologies are applied to large scale studies, can explain the increasing dissemination of ALS technologies. The observed good quality of results can be expressed by estimates of volumes and basal area with estimated error below the level of 8.4%, depending on the size of sampled area, the quantity of laser pulses per square meter and the number of control plots. This paper analyzes the potential of an ALS assessment to produce certain forest inventory statistics in plantations of cloned Eucalyptus spp with precision equal of superior to conventional methods. The statistics of interest in this case were: volume, basal area, mean height and dominant trees mean height. The ALS flight for data assessment covered two strips of approximately 2 by 20 Km, in which clouds of points were sampled in circular plots with a radius of 13 m. Plots were sampled in different parts of the strips to cover different stand ages. The clouds of points generated by the ALS assessment: overall height mean, standard error, five percentiles (height under which we can find 10%, 30%, 50%,70% and 90% of the ALS points above ground level in the cloud), and density of points above ground level in each percentile were calculated. The ALS statistics were used in regression models to estimate mean diameter, mean height, mean height of dominant trees, basal area and volume. Conventional forest inventory sample plots provided real data. For volume, an exploratory assessment involving different combinations of ALS statistics allowed for the definition of the most promising relationships and fitting tests based on well known forest biometric models. The models based on ALS statistics that produced the best results involved: the 30% percentile to estimate mean diameter (R(2)=0,88 and MQE%=0,0004); the 10% and 90% percentiles to estimate mean height (R(2)=0,94 and MQE%=0,0003); the 90% percentile to estimate dominant height (R(2)=0,96 and MQE%=0,0003); the 10% percentile and mean height of ALS points to estimate basal area (R(2)=0,92 and MQE%=0,0016); and, to estimate volume, age and the 30% and 90% percentiles (R(2)=0,95 MQE%=0,002). Among the tested forest biometric models, the best fits were provided by the modified Schumacher using age and the 90% percentile, modified Clutter using age, mean height of ALS points and the 70% percentile, and modified Buckman using age, mean height of ALS points and the 10% percentile.