905 resultados para AGRICULTURAL ECOSYSTEMS
Resumo:
Following two decades of policy change, in 2011 the European Commission tabled proposals for a new ‘reform’ of the CAP. A major component of the reform would be a revamping of the existing system of direct payments to farmers. For example, 30% of the spend would be dependent on farmers respecting new greening criteria; and payments would be restricted to active farmers and subject to a payment cap. These proposals will be debated by the Council of Ministers and the European Parliament throughout 2012, and possibly 2013, before final decisions are reached. What aspects, if any, of the proposals will prove acceptable is yet to be discerned. Although tabled as part of a financial package, the proposals do not appear to be driven by financial exigency: indeed they seek to maintain the expenditure status quo. Nor do they appear to be driven by international pressures: if anything, they backtrack on previous attempts to bring the CAP into conformity with a post-Doha WTO Agreement on Agriculture. Instead they seek to establish a new partnership between society and ‘farmers, who keep rural areas alive, who are in contact with the ecosystems and who produce the food we eat’ (Cioloș 2011), in an attempt to justify continuing support.
Resumo:
Vertical divergence of CO2 fluxes is observed over two Midwestern AmeriFlux forest sites. The differences in ensemble averaged hourly CO2 fluxes measured at two heights above canopy are relatively small (0.2–0.5 μmol m−2 s−1), but they are the major contributors to differences (76–256 g C m−2 or 41.8–50.6%) in estimated annual net ecosystem exchange (NEE) in 2001. A friction velocity criterion is used in these estimates but mean flow advection is not accounted for. This study examines the effects of coordinate rotation, averaging time period, sampling frequency and co-spectral correction on CO2 fluxes measured at a single height, and on vertical flux differences measured between two heights. Both the offset in measured vertical velocity and the downflow/upflow caused by supporting tower structures in upwind directions lead to systematic over- or under-estimates of fluxes measured at a single height. An offset of 1 cm s−1 and an upflow/downflow of 1° lead to 1% and 5.6% differences in momentum fluxes and nighttime sensible heat and CO2 fluxes, respectively, but only 0.5% and 2.8% differences in daytime sensible heat and CO2 fluxes. The sign and magnitude of both offset and upflow/downflow angle vary between sonic anemometers at two measurement heights. This introduces a systematic and large bias in vertical flux differences if these effects are not corrected in the coordinate rotation. A 1 h averaging time period is shown to be appropriate for the two sites. In the daytime, the absolute magnitudes of co-spectra decrease with height in the natural frequencies of 0.02–0.1 Hz but increase in the lower frequencies (<0.01 Hz). Thus, air motions in these two frequency ranges counteract each other in determining vertical flux differences, whose magnitude and sign vary with averaging time period. At night, co-spectral densities of CO2 are more positive at the higher levels of both sites in the frequency range of 0.03–0.4 Hz and this vertical increase is also shown at most frequencies lower than 0.03 Hz. Differences in co-spectral corrections at the two heights lead to a positive shift in vertical CO2 flux differences throughout the day at both sites. At night, the vertical CO2 flux differences between two measurement heights are 20–30% and 40–60% of co-spectral corrected CO2 fluxes measured at the lower levels of the two sites, respectively. Vertical differences of CO2 flux are relatively small in the daytime. Vertical differences in estimated mean vertical advection of CO2 between the two measurement heights generally do not improve the closure of the 1D (vertical) CO2 budget in the air layer between the two measurement heights. This may imply the significance of horizontal advection. However, a reliable assessment of mean advection contributions in annual NEE estimate at these two AmeriFlux sites is currently an unsolved problem.
Resumo:
It is well known that atmospheric concentrations of carbon dioxide (CO2) (and other greenhouse gases) have increased markedly as a result of human activity since the industrial revolution. It is perhaps less appreciated that natural and managed soils are an important source and sink for atmospheric CO2 and that, primarily as a result of the activities of soil microorganisms, there is a soil-derived respiratory flux of CO2 to the atmosphere that overshadows by tenfold the annual CO2 flux from fossil fuel emissions. Therefore small changes in the soil carbon cycle could have large impacts on atmospheric CO2 concentrations. Here we discuss the role of soil microbes in the global carbon cycle and review the main methods that have been used to identify the microorganisms responsible for the processing of plant photosynthetic carbon inputs to soil. We discuss whether application of these techniques can provide the information required to underpin the management of agro-ecosystems for carbon sequestration and increased agricultural sustainability. We conclude that, although crucial in enabling the identification of plant-derived carbon-utilising microbes, current technologies lack the high-throughput ability to quantitatively apportion carbon use by phylogentic groups and its use efficiency and destination within the microbial metabolome. It is this information that is required to inform rational manipulation of the plant–soil system to favour organisms or physiologies most important for promoting soil carbon storage in agricultural soil.
Resumo:
On-going human population growth and changing patterns of resource consumption are increasing global demand for ecosystem services, many of which are provided by soils. Some of these ecosystem services are linearly related to the surface area of pervious soil, whereas others show non-linear relationships, making ecosystem service optimization a complex task. As limited land availability creates conflicting demands among various types of land use, a central challenge is how to weigh these conflicting interests and how to achieve the best solutions possible from a perspective of sustainable societal development. These conflicting interests become most apparent in soils that are the most heavily used by humans for specific purposes: urban soils used for green spaces, housing, and other infrastructure and agricultural soils for producing food, fibres and biofuels. We argue that, despite their seemingly divergent uses of land, agricultural and urban soils share common features with regards to interactions between ecosystem services, and that the trade-offs associated with decision-making, while scale- and context-dependent, can be surprisingly similar between the two systems. We propose that the trade-offs within land use types and their soil-related ecosystems services are often disproportional, and quantifying these will enable ecologists and soil scientists to help policy makers optimizing management decisions when confronted with demands for multiple services under limited land availability.
Resumo:
In the Western Australian wheatbelt, the restoration of native eucalypt forests for managing degraded agricultural landscapes is a critical part of managing dryland salinity and rebuilding biodiversity. Such reforestation will also sequester carbon. Whereas most investigative emphasis has been on carbon stored in biomass, the effects of reforestation on soil organic carbon (SOC) stores and fertility are not known. Two 26 year old reforestation experiments with four Eucalyptus species (E. cladocalyx var nana, E. occidentalis, E. sargentii and E. wandoo) were compared with agricultural sites (Field). SOC stores (to 0.3 m depth) ranged between 33 and 55 Mg ha−1, with no statistically significant differences between tree species and adjacent farmland. Farming comprised crop and pasture rotations. In contrast, the reforested plots contained additional carbon in the tree biomass (23–60 Mg ha−1) and litter (19–34 Mg ha−1), with the greatest litter accumulation associated with E. sargentii. Litter represented between 29 and 56% of the biomass carbon and the protection or utilization of this litter in fire-prone, semi-arid farmland will be an important component of carbon management. Exch-Na and Exch-Mg accumulated under E. sargentii and E. occidentalis at one site. The results raise questions about the conclusions of SOC sequestration studies following reforestation based on limited sampling and reiterate the importance of considering litter in reforestation carbon accounts.
Resumo:
Transformation of the south-western Australian landscape from deep-rooted woody vegetation systems to shallow-rooted annual cropping systems has resulted in the severe loss of biodiversity and this loss has been exacerbated by rising ground waters that have mobilised stored salts causing extensive dry land salinity. Since the original plant communities were mostly perennial and deep rooted, the model for sustainable agriculture and landscape water management invariably includes deep rooted trees. Commercial forestry is however only economical in higher rainfall (>700 mm yr−1) areas whereas much of the area where biodiversity is threatened has lower rainfall (300–700 mm yr−1). Agroforestry may provide the opportunity to develop new agricultural landscapes that interlace ecosystem services such as carbon mitigation via carbon sequestration and biofuels, biodiversity restoration, watershed management while maintaining food production. Active markets are developing for some of these ecosystem services, however a lack of predictive metrics and the regulatory environment are impeding the adoption of several ecosystem services. Nonetheless, a clear opportunity exists for four major issues – the maintenance of food and fibre production, salinisation, biodiversity decline and climate change mitigation – to be managed at a meaningful scale and a new, sustainable agricultural landscape to be developed.
Resumo:
Lowland heath is an internationally important habitat type that has greatly declined in abundance throughout Western Europe. In recent years this has led to a growing interest in the restoration of heathland on agricultural land. This generally requires the use of chemical treatments to return soil chemical conditions to those appropriate for the support of heathland ecosystems. However, the potential for negative impacts on the environment due to the potential of these treatments to increase the availability of trace metals via raised soil acidity requires investigation. A large-scale field study investigated the effect of two chemical treatments used in heathland restoration, elemental sulphur and ferrous sulphate, on soil acidity and whether it is possible to predict the effect of the treatments on availability of two potentially toxic cations (Al and Cd) in the soil along with their subsequent accumulation in the shoots of the grass Agrostis capillaris. Results showed that both treatments decreased soil pH, but that only elemental sulphur produced a pH similar to heathland soil. The availability of Al, measured by extraction with 1 M ammonium nitrate, could not be predicted by soil pH, depth in the soil and total Al concentration in the soil. By contrast, availability of Cd could be predicted from these three variables. Concentrations of both Al and Cd in the shoots of A. capillaris showed no significant relationship with the extractable concentration in the soil. Results are discussed in light of the possible environmental impacts of the chemical restoration techniques.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We report here on the application of a compact ultraviolet spectrometer to measurement of NO2 emissions from sugar cane field burns in São Paulo, Brazil, the time-resolved NO2 emission from a 10 ha plot peaked at about 240 g (NO2) s(-1), and amounted to a total yield of approximately 50 kg of N, or about 0.5 g (N) m(-2). Emission of N as NOx (i.e., NO + NO2) was estimated at 2.5 g (N) in 2, equivalent to 30% of applied fertilizer nitrogen. The corresponding annual emission of NOx nitrogen from São Paulo State sugar cane burning was >45 Gg N. In contrast to mechanized harvesting, which does not require prior burning of the crop, manual harvesting with burning acts to recycle nitrogen into surface soils and ecosystems.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In 2001, the U.S. Geological Survey’s National Water-Quality Assessment (NAWQA) Program began an intensive study of nutrient enrichment—elevated concentrations of nitrogen and phosphorus— in streams in five agricultural basins across the Nation (see map, p. 2). This study is providing nationally consistent and comparable data and analyses of nutrient conditions, including how these conditions vary as a result of natural and human-related factors, and how nutrient conditions affect algae and other biological communities. This information will benefit stakeholders, including the U.S. Environmental Protection Agency (USEPA) and its partners, who are developing nutrient criteria to protect the aquatic health of streams in different geographic regions.
Resumo:
The aim of the present study is to contribute an ecologically relevant assessment of the ecotoxicological effects of pesticide applications in agricultural areas in the tropics, using an integrated approach with information gathered from soil and aquatic compartments. Carbofuran, an insecticide/nematicide used widely on sugarcane crops, was selected as a model substance. To evaluate the toxic effects of pesticide spraying for soil biota, as well as the potential indirect effects on aquatic biota resulting from surface runoff and/or leaching, field and laboratory (using a cost-effective simulator of pesticide applications) trials were performed. Standard ecotoxicological tests were performed with soil (Eisenia andrei, Folsomia candida, and Enchytraeus crypticus) and aquatic (Ceriodaphnia silvestrii) organisms, using serial dilutions of soil, eluate, leachate, and runoff samples. Among soil organisms, sensitivity was found to be E. crypticus < E. andrei < F. candida. Among the aqueous extracts, mortality of C. silvestrii was extreme in runoff samples, whereas eluates were by far the least toxic samples. A generally higher toxicity was found in the bioassays performed with samples from the field trial, indicating the need for improvements in the laboratory simulator. However, the tool developed proved to be valuable in evaluating the toxic effects of pesticide spraying in soils and the potential risks for aquatic compartments. Environ. Toxicol. Chem. 2012;31:437-445. (C) 2011 SETAC
Resumo:
Soil is a critically important component of the earth’s biosphere. Developing agricultural production systems able to conserve soil quality is essential to guarantee the current and future capacity of soil to provide goods and services. This study investigates the potential of microbial and biochemical parameters to be used as early and sensitive soil quality indicators. Their ability to differentiate plots under contrasting fertilization regimes is evaluated based also on their sensitivity to seasonal fluctuations of environmental conditions and on their relationship with soil chemical parameters. Further, the study addresses some of the critical methodological aspects of microplate-based fluorimetric enzyme assays, in order to optimize assay conditions and evaluate their suitability to be used as a toll to asses soil quality. The study was based on a long-term field experiment established in 1966 in the Po valley (Italy). The soil was cropped with maize (Z. mays L.) and winter wheat (T. aestivum L.) and received no organic fertilization, crop residue or manure, in combination with increasing levels of mineral N fertilizer. The soil microbiota responded to manure amendment increasing it biomass and activity and changing its community composition. Crop residue effect was much more limited. Mineral N fertilization stimulated crop residue mineralization, shifted microbial community composition and influenced N and P cycling enzyme activities. Seasonal fluctuations of environmental factors affected the soil microbiota. However microbial and biochemical parameters seasonality did not hamper the identification of fertilization-induced effects. Soil microbial community abundance, function and composition appeared to be strongly related to soil organic matter content and composition, confirming the close link existing between these soil quality indicators. Microplate-based fluorimetric enzyme assays showed potential to be used as fast and throughput toll to asses soil quality, but required proper optimization of the assay conditions for a precise estimation of enzymes maximum potential activity.