993 resultados para ACTIVATED RESTORATIVE MATERIALS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dental composite resins possess good esthetic properties, and are currently among the most popular dental restorative materials. Both organic and inorganic phases might influence the material behavior, the filler particle features and rate are the most important factors related to improvement of the mechanical properties of resin composites. Thus, the objective of this study was to evaluate the effect of three different composite resins on the polymerization process by Vickers hardness test. The samples were prepared using three different composite resins, as follow: group I-P-60 (3M/ESPE); group II-Herculite XRV (Kerr), and group III-Durafill (Heraeus-Kulzer). The samples were made in a polytetrafluoroethylene mould, with a rectangular cavity measuring 7 mm in length, 4 mm in width, and 3 mm in thickness. The samples were photo-activated by one light-curing unit based on blue LEDs (Ultrablue III-DMC/Brazil) for 20 and 40 s of irradiation times. The Vickers hardness test was performed 24 h after the photo-activation until the standardized depth of 3 mm. The Vickers hardness mean values varied from 158.9 (+/- 0.81) to 81.4 (+/- 1.94) for P-60, from 138.7 (+/- 0.37) to 61.7 (+/- 0.24) for Herculite XRV, and from 107. 5 (+/- 0.81) to 44.5 (+/- 1.36) for Durafill composite resins photo-activated during 20 s for the 1st and 2nd mm, respectively. During 40 s of photo-activation, the Vickers hardness mean values were: from 181.0 (+/- 0.70) to 15.6 (+/- 0.29) for P-60, and from 161.8 (+/- 0.41) to 11.2 (+/- 0.17) for Herculite XRV composite resins, for the 1st and 3th mm, respectively. For Durafill composite resin the mean values varied from 120.1 (+/- 0.66) to 61.7 (+/- 0.20), for the 1st and 2nd mm, respectively. The variation coefficient (CV) was in the most of the groups lower than 1%, then the descriptive statistic analysis was used. The Vickers hardness mean values for Durafill were lower than P-60 and Herculite XRV composite resins for 20 and 40 s of irradiation time. The polymerization process was greatly affected by the composition of the composite resins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: the purpose of this study was to histomorphometrically evaluate the response of periodontal tissues covering Class V resin restorations in dogs.Methods: After raising a mucoperiosteal flap, bony defects measuring 5 x 5 mm were created on the buccal aspect of the canines of five dogs followed by cavity preparations on the root surface measuring 3 x 3 x 1 mm. Before repositioning the flap to cover the bone defect, the cavities were restored with composite resin (CR) or resin-modified glass ionomer cement (RMGIC) or were left unrestored as control (C). The dogs were euthanized 90 days after surgery. Specimens comprising the tooth and periodontal tissues were removed, processed routinely, cut into longitudinal serial sections in the bucco-lingual direction, and stained with hematoxylin and eosin (H&E) or Masson's trichrome. The most central sections were selected for histomorphometric analysis.Results: Histomorphometric analysis revealed apical migration of epithelial tissue onto the restorative materials (RMGIC and CR). The C group presented significantly longer connective tissue attachment (P < 0.05) than the RMGIC and CR groups and significantly higher bone regeneration (P < 0.05) compared to the RMGIC group. Histologically, the cervical third (CT) of all groups had the most marked chronic inflammatory infiltrate.Conclusions: Within the limits of this study, it can be concluded that the restorative materials used exhibit biocompatibility; however, both materials interfered with the development of new bone and the connective tissue attachment process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A survey was sent to 70 Brazilian dental schools evaluating techniques and restorative materials being taught for Class I and II preparation in posterior primary teeth by Pediatric Dentistry courses. After a 54% response rate, marked teaching diversity was found among Brazilian dental schools. Amalgam continues to be taught, but a tendency of preference towards more esthetic-like materials was observed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to quantitatively evaluate the effect of 10% carbamide peroxide on the microhardness of pit and fissure sealant materials. Methods: Fluroshield, Vitroseal Alfa, and one unfilled (Clinpro) sealants were placed in Teflon matrices (4 mm in diameter by 2 mm in height) and polymerized for 40 seconds. A total of 20 specimens were prepared for each material, in which half were assigned as the control group (stored in artificial saliva and no bleaching treatment). For the remaining half, Clarigel Gold bleaching agent (10% carbamide peroxide) was placed over the specimen surface for 4 hours/day during 4 weeks. When specimens were not under bleaching treatment, they were kept in artificial saliva. Afterwards, specimens were subjected to Knoop microhardness testing using a 25-g load for 5 seconds. Five measurements were made on the sealants' surfaces and then calculated in Knoop hardness values. The data were statistically analyzed by two-way analysis of variance and Tukey's tests with a 5% confidence level. Results: The results of this in vitro study showed that the application of a carbamide peroxide-based bleaching material significantly affected the microhardness values of filled sealant materials. The bleaching agent did not affect the microhardness of the unfilled sealant. CLINICAL SIGNIFICANCE: The results of this in vitro study suggest that the bleaching agents altered the surface hardness of filled sealant restorative materials. This could possibly lead to increased wear and surface roughness. © 2006, Copyright the authors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study is to evaluate the flexural resistance of three types of restorative materials: compomer (Freedom), resin-modified glass-ionomer (Vitremer) and composite resin (Esthet-X), observing whether the application of bleaching agent can cause alterations of their flexural properties. Sixty samples were made using a 10 x 1 x 1 mm brass mold, and divided into three groups: G1- Freedom (SDI); G2- Vitremer (3M ESPE); G3- Esthet-X (Dentsply). On half of the samples of each group (10 samples) the bleaching treatment was applied and the other half used as control, was stored in distilled water at a temperature of 37 degrees C. Whiteness HP Maxx bleaching system was applied on the sample surface following the manufacturer's recommendations, simulating the bleaching treatment at the clinic. After this period, a flexural strength (three-point bending) test was conducted using (EMIC DL 1000) machine until the samples fractured. The data were submitted to ANOVA and Tukey tests. Of the restorative materials studied, G3-(87.24 +/- 31.40 MPa) presented the highest flexural strength, followed by G1-(61.67 +/- 21.32 MPa) and G2-(61.67 +/- 21.32 MPa). There was a statistical difference in flexural strength after the bleaching treatment. It was concluded that the use of a beaching agent can promote significant alteration of the flexural strength of these restorative materials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The usefulness of fluoride-releasing restorations in secondary caries prevention may be questioned because of the presence of other common sources of fluoride and because of ageing of the restorations. This study tested the hypothesis that glass-ionomer cement restorations, either aged or unaged, do not prevent secondary root caries, when fluoride dentifrice is frequently used. Sixteen volunteers wore palatal appliances in two phases of 14 days, according to a 2 x 2 crossover design. In each phase the appliance was loaded with bovine root dentine slabs restored with either glass-ionomer or resin composite, either aged or unaged. Specimens were exposed to cariogenic challenge 4 times/day and to fluoridated dentifrice 3 times/day. The fluoride content in the biofilm (FB) formed on slabs and the mineral loss (Delta Z) around the restorations were analysed. No differences were found between restorative materials regarding the FB and the Delta Z, for either aged (p = 0.792 and p = 0.645, respectively) or unaged (p = 1.00 and p = 0.278, respectively) groups. Under the cariogenic and fluoride dentifrice exposure conditions of this study, the glass-ionomer restoration, either aged or unaged, did not provide additional protection against secondary root caries. Copyright (c) 2006 S. Karger AG, Basel.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This in vitro study evaluated the demineralization around restorations class V made on the buccal and lingual surfaces of teeth when using different restorative materials. Thirty extracted teeth were randomly divided into 3 groups (n=10) according to the restorative material: Group I - Fuji II LC (GC America Inc., Alsip, Illinois, USA), Group II - Tetric (Ivoclar Vivadent AG, Schaan, Liechtenstein) and Group III - Chelon Fil (3M/ESPE., Seefeld, Germany). The teeth were submitted to a pH-cycling model associated to a thermocycling model. Sections were made and the specimens were analyzed under a polarized light microscopy as for the presence of demineralization. Measurements were performed and the results were subjected to statistical analysis using Anova and Tukey´s Test (α=0.05). Mean values of demineralization depth (µm) according to each positions showed that the demineralization was significantly reduced when Chelon Fil (Group III) was used for all depths, when compared to fluoridated resin materials. Also, it was verified that non-fluoridated resin material, composite resin Tetric, had the lowest inhibitory effect on the development of demineralization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

When substance loss caused by erosive tooth wear reaches a certain degree, oral rehabilitation becomes necessary. Prior to the most recent decade, the severely eroded dentition could only be rehabilitated by the provision of extensive crown and bridge work or removable overdentures. As a result of the improvements in composite restorative materials, and in adhesive techniques, it has become possible to rehabilitate eroded dentitions in a less invasive manner. However, even today advanced erosive destruction requires the placement of more extensive restorations such as ceramic veneers or overlays and crowns. It has to be kept in mind that the etiology of the erosive lesions needs to be determined in order to halt the disease, otherwise the erosive process will continue to destroy tooth substance. This overview presents aspects concerning the restorative materials as well as the treatment options available to rehabilitate patients with erosion, from minimally invasive direct composite reconstructions to adhesively retained all-ceramic restorations. Restorative treatment is dependent on individual circumstances and the perceived needs and concerns of the patient. Long-term success is only possible when the cause is eliminated. In all situations, the restorative preparations have to follow the principles of minimally invasive treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

When substance loss caused by erosive tooth wear reaches a certain degree, oral rehabilitation becomes necessary. Until some 20 years ago, the severely eroded dentition could only be rehabilitated by the provision of extensive crown and bridge work or removable overdentures. As a result of the improvements in resin composite restorative materials, and in adhesive techniques, it has become possible to rehabilitate eroded dentitions in a less invasive manner. However, even today advanced erosive destruction requires the placement of more extensive restorations such as overlays and crowns. It has to be kept in mind that the etiology of the erosive lesions needs to be determined in order to halt the disease, otherwise the erosive process will continue to destroy tooth substance. This overview presents aspects concerning the restorative materials as well as the treatment options available to rehabilitate patients with erosive tooth wear, from minimally invasive direct composite reconstructions to adhesively retained all-ceramic restorations. Restorative treatment is dependent on individual circumstances and the perceived needs and concerns of the patient. Long-term success is only possible when the cause is eliminated. In all situations, the restorative preparations have to follow the principles of minimally invasive treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alkaline hydroxides, especially sodium and potassium hydroxides, are multi-million-ton per annum commodities and strong chemical bases that have large scale applications. Some of them are related with their consequent ability to degrade most materials, depending on the temperature used. As an example, these chemicals are involved in the manufacture of pulp and paper, textiles, biodiesels, soaps and detergents, acid gases removal (e.g., SO2) and others, as well as in many organic synthesis processes. Sodium and potassium hydroxides are strong and corrosive bases, but they are also very stable chemicals that can melt without decomposition, NaOH at 318ºC, and KOH at 360ºC. Hence, they can react with most materials, even with relatively inert ones such as carbon materials. Thus, at temperatures higher than 360ºC these melted hydroxides easily react with most types of carbon-containing raw materials (coals, lignocellulosic materials, pitches, etc.), as well as with most pure carbon materials (carbon fibers, carbon nanofibers and carbon nanotubes). This reaction occurs via a solid-liquid redox reaction in which both hydroxides (NaOH or KOH) are converted to the following main products: hydrogen, alkaline metals and alkaline carbonates, as a result of the carbon precursor oxidation. By controlling this reaction, and after a suitable washing process, good quality activated carbons (ACs), a classical type of porous materials, can be prepared. Such carbon activation by hydroxides, known since long time ago, continues to be under research due to the unique properties of the resulting activated carbons. They have promising high porosity developments and interesting pore size distributions. These two properties are important for new applications such as gas storage (e.g., natural gas or hydrogen), capture, storage and transport of carbon dioxide, electricity storage demands (EDLC-supercapacitors-) or pollution control. Because these applications require new and superior quality activated carbons, there is no doubt that among the different existing activating processes, the one based on the chemical reaction between the carbon precursor and the alkaline hydroxide (NaOH or KOH) gives the best activation results. The present article covers different aspects of the activation by hydroxides, including the characteristics of the resulting activated carbons and their performance in some environment-related applications. The following topics are discussed: i) variables of the preparation method, such as the nature of the hydroxide, the type of carbon precursor, the hydroxide/carbon precursor ratio, the mixing procedure of carbon precursor and hydroxide (impregnation of the precursor with a hydroxide solution or mixing both, hydroxide and carbon precursor, as solids), or the temperature and time of the reaction are discussed, analyzing their effect on the resulting porosity; ii) analysis of the main reactions occurring during the activation process, iii) comparative analysis of the porosity development obtained from different activation processes (e.g., CO2, steam, phosphoric acid and hydroxides activation); and iv) performance of the prepared activated carbon materials on a few applications, such as VOC removal, electricity and gas storages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Natural gas storage on porous materials (ANG) is a promising alternative to conventional on-board compressed (CNG) or liquefied natural gas (LNG). To date, Metal–organic framework (MOF) materials have apparently been the only system published in the literature that is able to reach the new Department of Energy (DOE) value of 263 cm3 (STP: 273.15 K, 1 atm)/cm3; however, this value was obtained by using the ideal single-crystal density to calculate the volumetric capacity. Here, we prove experimentally, and for the first time, that properly designed activated carbon materials can really achieve the new DOE value while avoiding the additional drawback usually associated with MOF materials (i.e., the low mechanical stability under pressure (conforming), which is required for any practical application).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors are optimized using the capacitance and the potential stability limits of the electrodes, with the reliability of the design largely depending on the accuracy and the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed. In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the near future, geopolymers or alkali-activated cementitious materials will be used as new high-performance construction materials of low environmental impact with a reasonable cost. This material is a good candidate to partially replace ordinary portland cement (OPC) in concrete as a major construction material that plays an outstanding role in the construction industry of different structures. Geopolymer materials are inorganic polymers based on alumina and silica units; they are synthesized from a wide range of dehydroxylated alumina-silicate powders condensed with alkaline silicate in a highly alkaline environment. Geopolymeric materials can be produced from a wide range of alumina-silica, including natural products--such as natural pozzolan and metakaolin--or coproducts--such as fly ash (coal and lignite), oil fuel ash, blast furnace or steel slag, and silica fume--and provide a route toward sustainable development. Using lesser amounts of calcium-based raw materials, lower manufacturing temperature, and lower amounts of fuel result in reduced carbon emissions for geopolymer cement manufacture up to 22 to 72% in comparison with portland cement. A study has been done by the authors to investigate the intrinsic nature of different types of Iranian natural pozzolans to determine the activators and methods that could be used to produce a geopolymer concrete based on alkali-activated natural pozzolan (AANP) and optimize mixture design. The mechanical behavior and durability of these types of geopolymer concrete were investigated and compared with normal OPC concrete mixtures cast by the authors and also reported in the literature. This paper summarizes the main conclusions of the research regarding pozzolanic activity, activator properties, engineering and durability properties, applications and evaluation of carbon footprint, and cost for AANP concrete.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo deste estudo foi comparar in vitro o desgaste dental de pré-molares (PM) e molares (M) e sua relação com o valor de dureza Vickers dos materiais utilizados como antagonistas em uma máquina de abrasão simulada para provocar o desgaste nos dentes testados. Os materiais antagonistas utilizados foram VeraBond II (liga de Ni-Cr), Solidex (resina composta) e IPS Empress 2 (cerâmica). Para cada ensaio de dureza, foram preparados seis corpos-de-prova de cada material, os quais foram polidos sob refrigeração, com ciclo de 20 min para cada granulação. Num microdurômetro (HMV-2), foram realizadas três mossas por quadrante, cada uma sob carga de 19,614 N por 30 s, totalizando 12 mossas de base quadrada com ângulo de 136 entre os planos. O teste de abrasão foi realizado numa máquina simuladora de abrasão, freqüência de 265 ciclos/min e 4,4 Hz, com um percurso do antagonista de 10 mm à velocidade de 88 mm/s. Cada dente foi testado em oposição a um antagonista (foram 6 pares dente/material para cada grupo), em água deionizada, sob carga de 5 N, por 150 min, num total de 39.750 ciclos. Foram utilizados dezenove dentes 1 pré-molares, dezenove 3 molares e confeccionados doze antagonistas em cada material em forma de pastilha. Cada grupo de seis dentes foi testado em oposição a seis antagonistas do mesmo material. Ademais, um dente 1 pré-molar (PM) e um dente 3 molar (M) foram testados em oposição ao Plexiglass. Com relação ao desgaste do esmalte dentário (PM+M) segundo o material antagonista, o teste de Kruskal-Wallis evidenciou diferença significativa com p-valor < 0,001 e o teste de Mann-Whitney evidenciou diferença significativa nas comparações PM+M/resina X PM+M/metal (p-valor < 0,001), PM+M/resina X PM+M/cerâmica (p-valor < 0,001) e PM+M/metal X PM+M/cerâmica (p-valor = 0,002). A análise isolada, considerando pré-molares e molares separadamente, encontrou diferença significativa em relação ao desgaste do esmalte dentário no teste de Kruskall-Wallis, porém não detectou diferença significativa no teste de comparação múltipla Mann-Whitney quando comparou o desgaste sofrido pelo PM/metal em relação ao PM/cerâmica. Em relação à dureza Vickers detectou-se diferença significativa da dureza dos materiais no teste de Kruskall-Wallis (p-valor < 0,001) e também no teste de Mann-Whitney nas comparações múltiplas com p-valor = 0,002. Comparando-se a dureza com a perfilometria, observou-se uma correlação estatisticamente significativa (p ≤ 0,05) na correlação negativa (ρ= -0,829) entre a dureza do metal como material antagonista e o desgaste do esmalte dentário do dente molar. Os resultados sugeriram que todo material restaurador indireto estudado causou desgaste ao esmalte dentário quando submetido a forças de simulação de abrasão com carga. Embora tenha sido observada correlação entre dureza e resistência à abrasão, essa correlação foi pouco significativa.