208 resultados para ABERRATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The introduction of Next Generation Sequencing (NGS) facilitated the task of localizing DNA variation and identifying the genetic cause of yet unsolved Mendelian disorders. Using Whole Exome Capture method and NGS, we identified the causative genetic aberration responsible for a number of monogenic disorders previously undetermined. Due to the novelty of the NGS method we benchmarked different algorithms to assess their merits and defects. This allowed us to establish a pipeline that we successfully used to pinpoint genes responsible for a form of West's syndrome, a Complex Intellectual Disability syndrome associated with patellar dislocation and celiac disease, and correcting some erroneous molecular diagnosis of Alport's syndrome in a Saudi Arabian family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Acute myeloid leukemia (AML) with inv(3)(q21q26.2)/t(3;3)(q21;q26.2) [inv(3)/t(3;3)] is recognized as a distinctive entity in the WHO classification. Risk assignment and clinical and genetic characterization of AML with chromosome 3q abnormalities other than inv(3)/t(3;3) remain largely unresolved. PATIENTS AND METHODS: Cytogenetics, molecular genetics, therapy response, and outcome analysis were performed in 6,515 newly diagnosed adult AML patients. Patients were treated on Dutch-Belgian Hemato-Oncology Cooperative Group/Swiss Group for Clinical Cancer Research (HOVON/SAKK; n = 3,501) and German-Austrian Acute Myeloid Leukemia Study Group (AMLSG; n = 3,014) protocols. EVI1 and MDS1/EVI1 expression was determined by real-time quantitative polymerase chain reaction. RESULTS: 3q abnormalities were detected in 4.4% of AML patients (288 of 6,515). Four distinct groups were defined: A: inv(3)/t(3;3), 32%; B: balanced t(3q26), 18%; C: balanced t(3q21), 7%; and D: other 3q abnormalities, 43%. Monosomy 7 was the most common additional aberration in groups (A), 66%; (B), 31%; and (D), 37%. N-RAS mutations and dissociate EVI1 versus MDS1/EVI1 overexpression were associated with inv(3)/t(3;3). Patients with inv(3)/t(3;3) and balanced t(3q21) at diagnosis presented with higher WBC and platelet counts. In multivariable analysis, only inv(3)/t(3;3), but not t(3q26) and t(3q21), predicted reduced relapse-free survival (hazard ratio [HR], 1.99; P < .001) and overall survival (HR, 1.4; P = .006). This adverse prognostic impact of inv(3)/t(3;3) was enhanced by additional monosomy 7. Group D 3q aberrant AML also had a poor outcome related to the coexistence of complex and/or monosomal karyotypes and cryptic inv(3)/t(3;3). CONCLUSION: Various categories of 3q abnormalities in AML can be distinguished according to their clinical, hematologic, and genetic features. AML with inv(3)/t(3;3) represents a distinctive subgroup with unfavorable prognosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drosophila melanogaster is a model organism instrumental for numerous biological studies. The compound eye of this insect consists of some eight hundred individual ommatidia or facets, ca. 15 µm in cross-section. Each ommatidium contains eighteen cells including four cone cells secreting the lens material (cornea). High-resolution imaging of the cornea of different insects has demonstrated that each lens is covered by the nipple arrays--small outgrowths of ca. 200 nm in diameter. Here we for the first time utilize atomic force microscopy (AFM) to investigate nipple arrays of the Drosophila lens, achieving an unprecedented visualization of the architecture of these nanostructures. We find by Fourier analysis that the nipple arrays of Drosophila are disordered, and that the seemingly ordered appearance is a consequence of dense packing of the nipples. In contrast, Fourier analysis confirms the visibly ordered nature of the eye microstructures--the individual lenses. This is different in the frizzled mutants of Drosophila, where both Fourier analysis and optical imaging detect disorder in lens packing. AFM reveals intercalations of the lens material between individual lenses in frizzled mutants, providing explanation for this disorder. In contrast, nanostructures of the mutant lens show the same organization as in wild-type flies. Thus, frizzled mutants display abnormal organization of the corneal micro-, but not nano-structures. At the same time, nipples of the mutant flies are shorter than those of the wild-type. We also analyze corneal surface of glossy-appearing eyes overexpressing Wingless--the lipoprotein ligand of Frizzled receptors, and find the catastrophic aberration in nipple arrays, providing experimental evidence in favor of the major anti-reflective function of these insect eye nanostructures. The combination of the easily tractable genetic model organism and robust AFM analysis represents a novel methodology to analyze development and architecture of these surface formations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image processing. This paper provides the theoretical background and technical information for performing the experiment. The proposed activity requires students able to develop a wide range of skills since they are expected to deal with optical components, including spatial light modulators, and develop scripts to perform some calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the study of the influence of optical aberrations in a joint-transform correlator: The wave aberration of the optical system is computed from data obtained by ray tracing. Three situations are explored: We consider the aberration only in the first diffraction stage (generation of power spectrum), then only in the second (transformation of the power spectrum into correlation), and finally in both stages simultaneously. The results show that the quality of the correlation is determined mostly by the aberrations of the first diffraction stage and that we can optimize the setup by moving the cameras along the optical axis to a suitable position. The good agreement between the predicted data and the experimental results shows that the method explains well the behavior of optical diffraction systems when aberrations are taken into account.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : Le glioblastome (GBM, WHO grade IV) est la tumeur cérébrale primaire la plus fréquente et la plus maligne, son pronostic reste très réservé et sa réponse aux différents traitements limitée. Récemment, une étude clinique randomisée (EORTC 26981/NCIC CE.3) a démontré que le traitement combiné de temozolomide et radiothérapie (RT/TMZ) est le meilleur dans les cas de GBM nouvellement diagnostiqués [1]. Cependant, seul un sous-groupe de patients bénéficie du traitement RT/TMZ et même parmi eux, leur survie reste très limitée. Pour tenter de mieux comprendre les réponses au traitement RT/TMZ, la biologie du GBM, identifier d'autres facteurs de résistance et découvrir de nouvelles cibles aux traitements, nous avons conduit une analyse moléculaire étendue à 73 patients inclus dans cette étude clinique. Nous avons complété les résultats moléculaires déjà obtenus par un profil génomique du nombre de copies par Array Comparative Genomic Hybridization. Afin d'atteindre nos objectifs, nous avons analysé en parallèle les données cliniques des patients et leurs profils moléculaires. Nos résultats confirment des analyses connues dans le domaine des aberrations du nombre de copies (CNA) et de profils du glioblastome. Nous avons observé une bonne corrélation entre le CNA génomique et l'expression de l'ARN messager dans le glioblastome et identifié un nouveau modèle de CNA du chromosome 7 pouvant présenter un intérêt clinique. Nous avons aussi observé par l'analyse du CNA que moins de 10% des glioblastomes conservent leurs mécanismes de suppression de tumeurs p53 et Rb1. Nous avons aussi observé que l'amplification du CDK4 peut constituer un facteur supplémentaire de résistance au traitement RT/TMZ, cette observation nécessite confirmation sur un plus grand nombre d'analyses. Nous avons montré que dans notre analyse des profils moléculaires et cliniques, il n'est pas possible de différencier le GBM à composante oligodendrogliale (GBM-O) du glioblastome. En superposant les profils moléculaires et les modèles expérimentaux in vitro, nous avons identifié WIF-1 comme un gène suppresseur de tumeur probable et une activation du signal WNT dans la pathologie du glioblastome. Ces observations pourraient servir à une meilleure compréhension de cette maladie dans le futur. Abstract : Glioblastoma, (GBM, WHO grade IV) is the most malignant and most frequent primary brain tumor with a very poor prognosis and response to therapy. A recent randomized clinical trial (EORTC26981/NCIC CE.3) established RT/TMZ as the 1St effective chemo-radiation therapy in newly diagnosed GBM [1]. However only a genetic subgroup of patients benefit from RT/TMZ and even in this subgroup overall survival remains very dismal. To explain the observed response to RT/TMZ, have a better understanding of GBM biology, identify other resistance factors and discover new drugable targets a comprehensive molecular analysis was performed in 73 of these GBM trial cohort. We complemented the available molecular data with a genomic copy number profiling by Array Comparative Genomic Hybridization. We proceeded to align the molecular profiles and the Clinical data, to meet our project objectives. Our data confirm known GBM Copy Number Aberrations and profiles. We observed a good correlation of genomic CN and mRNA expression in GBM, and identified new interesting CNA pattern for chromosome 7 with a potential clinical value. We also observed that by copy number aberration data alone, less than 10% of GBM have an intact p53 and Rb1 tumor .suppressor pathways. We equally observed that CDK4 amplification might constitute an additional RT/TMZ resistant factor, an observation that will need confirmation in a larger data set. We show that the molecular and clinical profiles in our data set, does not support the identification of GBM-O as a new entity in GBM. By combining the molecular profiles and in vitro model experiments we identify WIF1 as a potential GBM TSG and an activated WNT signaling as a pathologic event in GBM worth incorporation in attempts to better understand and impact outcome in this disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fundamental trait of the human self is its continuum experience of space and time. Perceptual aberrations of this spatial and temporal continuity is a major characteristic of schizophrenia spectrum disturbances--including schizophrenia, schizotypal personality disorder and schizotypy. We have previously found the classical Perceptual Aberration Scale (PAS) scores, related to body and space, to be positively correlated with both behavior and temporo-parietal activation in healthy participants performing a task involving self-projection in space. However, not much is known about the relationship between temporal perceptual aberration, behavior and brain activity. To this aim, we composed a temporal Perceptual Aberration Scale (tPAS) similar to the traditional PAS. Testing on 170 participants suggested similar performance for PAS and tPAS. We then correlated tPAS and PAS scores to participants' performance and neural activity in a task of self-projection in time. tPAS scores correlated positively with reaction times across task conditions, as did PAS scores. Evoked potential mapping and electrical neuroimaging showed self-projection in time to recruit a network of brain regions at the left anterior temporal cortex, right temporo-parietal junction, and occipito-temporal cortex, and duration of activation in this network positively correlated with tPAS and PAS scores. These data demonstrate that schizotypal perceptual aberrations of both time and space, as reflected by tPAS and PAS scores, are positively correlated with performance and brain activation during self-projection in time in healthy individuals along the schizophrenia spectrum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many types of tumors exhibit characteristic chromosomal losses or gains, as well as local amplifications and deletions. Within any given tumor type, sample specific amplifications and deletions are also observed. Typically, a region that is aberrant in more tumors, or whose copy number change is stronger, would be considered as a more promising candidate to be biologically relevant to cancer. We sought for an intuitive method to define such aberrations and prioritize them. We define V, the "volume" associated with an aberration, as the product of three factors: (a) fraction of patients with the aberration, (b) the aberration's length and (c) its amplitude. Our algorithm compares the values of V derived from the real data to a null distribution obtained by permutations, and yields the statistical significance (p-value) of the measured value of V. We detected genetic locations that were significantly aberrant, and combine them with chromosomal arm status (gain/loss) to create a succinct fingerprint of the tumor genome. This genomic fingerprint is used to visualize the tumors, highlighting events that are co-occurring or mutually exclusive. We apply the method on three different public array CGH datasets of Medulloblastoma and Neuroblastoma, and demonstrate its ability to detect chromosomal regions that were known to be altered in the tested cancer types, as well as to suggest new genomic locations to be tested. We identified a potential new subtype of Medulloblastoma, which is analogous to Neuroblastoma type 1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Protein degradation is an indispensable process for cells which is often deregulated in various diseases, including malignant conditions. Depending on the specific cell type and functions of expressed proteins, this aberration may have different effects on the determination of malignant phenotypes. A discrete, inherent feature of malignant glioma is its profound invasive and migratory potential, regulated by the expression of signaling and effector proteins, many of which are also subjected to post-translational regulation by the ubiquitin-proteasome system (UPS). Here we provide an overview of this connection, focusing on important pro-invasive protein signals targeted by the UPS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pharmacologic agents that target protein products of oncogenes in tumors are playing an increasing clinical role in the treatment of cancer. Currently, the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) represent the standard of care for patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) harboring activating EGFR mutations. Subsequently other genetic abnormalities with "driver" characteristics - implying transforming and tumor maintenance capabilities have been extensively reported in several small distinct subsets of NSCLC. Among these rare genetic changes, anaplastic lymphoma kinase (ALK) gene rearrangements, most often consisting in a chromosome 2 inversion leading to a fusion with the echinoderm microtubule-associated protein like 4 (EML4) gene, results in the abnormal expression and activation of this tyrosine kinase in the cytoplasm of cancer cells. This rearrangement occurs in 2-5% of NSCLC, predominantly in young (50 years or younger), never- or former-smokers with adenocarcinoma. This aberration most commonly occurs a independently of EGFR and KRAS gene mutations. A fluorescent in situ hybridization assay was approved by the US Food and Drug Administration (FDA) as the standard method for the detection of ALK gene rearrangement in clinical practice and is considered the gold standard. Crizotinib, a first-in-class dual ALK and c-MET inhibitor, has been shown to be particularly effective against ALK positive NSCLC, showing dramatic and prolonged responses with low toxicity, predominantly restricted to the gastro-intestinal and visual systems, and generally self-limiting or easily managed. However, resistance to crizotinib inevitably emerges. The molecular mechanisms of resistance are currently under investigation, as are therapeutic approaches including crizotinib-based combination therapy and novel agents such as Hsp90 inhibitors. This review aims to present the current knowledge on this fusion gene, the clinic-pathological profile of ALK rearranged NSCLC, and to review the existing literature on ALK inhibitors, focusing on their role in the treatment of NSCLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A drinking experiment with participants suffering from Gilbert's syndrome was performed to study the possible influence of this glucuronidation disorder on the formation of ethyl glucuronide (EtG). Gilbert's syndrome is a rather common and, in most cases, asymptomatic congenital metabolic aberration with a prevalence of about 5 %. It is characterized by a reduction of the enzyme activity of the uridine diphosphate glucuronosyltransferase (UGT) isoform 1A1 up to 80 %. One of the glucuronidation products is EtG, which is formed in the organism following exposure to ethanol. EtG is used as a short-term marker for ethyl alcohol consumption to prove abstinence in various settings. After 2 days of abstinence from ethanol and giving a void urine sample, 30 study participants drank 0.1 L of sparkling wine (9 g ethanol). 3, 6, 12, and 24 h after drinking, urine samples were collected. 3 hours after drinking, an additional blood sample was taken, in which liver enzyme activities, ethanol, hematological parameters, and bilirubin were measured. EtG and ethyl sulfate (EtS), another short-term marker of ethanol consumption, were determined in the urine samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS); creatinine was measured photometrically. In all participants, EtG and EtS were detected in concentrations showing a wide range (EtG: 3 h sample 0.5-18.43 mg/L and 6 h sample 0.67-13.8 mg/L; EtS: 3 h sample 0.87-6.87 mg/L and 6 h sample 0.29-4.48 mg/L). No evidence of impaired EtG formation was found. Thus, EtG seems to be a suitable marker for ethanol consumption even in individuals with Gilbert's syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: The aims of the study were to use cone beam computed tomography (CBCT) images of nasopalatine duct cysts (NPDC) and to calculate the diameter, surface area, and 3D-volume using a custom-made software program. Furthermore, any associations of dimensions of NPDC with age, gender, presence/absence of maxillary incisors/canines (MI/MC), endodontic treatment of MI/MC, presenting symptoms, and postoperative complications were evaluated. MATERIAL AND METHODS: The study comprised 40 patients with a histopathologically confirmed NPDC. On preoperative CBCT scans, curves delineating the cystic borders were drawn in all planes and the widest diameter (in millimeter), surface area (in square millimeter), and volume (in cubic millimeter) were calculated. RESULTS: The overall mean cyst diameter was 15 mm (range 7-47 mm), the mean cyst surface area 566 mm(2) (84-4,516 mm(2)), and the mean cyst volume 1,735 mm(3) (65-25,350 mm(3)). For 22 randomly allocated cases, a second measurement resulted in a mean absolute aberration of ±4.2 % for the volume, ±2.8 % for the surface, and ±4.9 % for the diameter. A statistically significant association was found for the CBCT determined cyst measurements and the need for preoperative endodontic treatment to MI/MC and for postoperative complications. CONCLUSION: In the hands of a single experienced operator, the novel software exhibited high repeatability for measurements of cyst dimensions. Further studies are needed to assess the application of this tool for dimensional analysis of different jaw cysts and lesions including treatment planning. CLINICAL RELEVANCE: Accurate radiographic information of the bone volume lost (osteolysis) due to expansion of a cystic lesion in three dimensions could help in personalized treatment planning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present paper we discuss the development of "wave-front", an instrument for determining the lower and higher optical aberrations of the human eye. We also discuss the advantages that such instrumentation and techniques might bring to the ophthalmology professional of the 21st century. By shining a small light spot on the retina of subjects and observing the light that is reflected back from within the eye, we are able to quantitatively determine the amount of lower order aberrations (astigmatism, myopia, hyperopia) and higher order aberrations (coma, spherical aberration, etc.). We have measured artificial eyes with calibrated ametropia ranging from +5 to -5 D, with and without 2 D astigmatism with axis at 45º and 90º. We used a device known as the Hartmann-Shack (HS) sensor, originally developed for measuring the optical aberrations of optical instruments and general refracting surfaces in astronomical telescopes. The HS sensor sends information to a computer software for decomposition of wave-front aberrations into a set of Zernike polynomials. These polynomials have special mathematical properties and are more suitable in this case than the traditional Seidel polynomials. We have demonstrated that this technique is more precise than conventional autorefraction, with a root mean square error (RMSE) of less than 0.1 µm for a 4-mm diameter pupil. In terms of dioptric power this represents an RMSE error of less than 0.04 D and 5º for the axis. This precision is sufficient for customized corneal ablations, among other applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of the present study was to measure contrast sensitivity to equiluminant gratings using steady-state visual evoked cortical potential (ssVECP) and psychophysics. Six healthy volunteers were evaluated with ssVECPs and psychophysics. The visual stimuli were red-green or blue-yellow horizontal sinusoidal gratings, 5° × 5°, 34.3 cd/m2 mean luminance, presented at 6 Hz. Eight spatial frequencies from 0.2 to 8 cpd were used, each presented at 8 contrast levels. Contrast threshold was obtained by extrapolating second harmonic amplitude values to zero. Psychophysical contrast thresholds were measured using stimuli at 6 Hz and static presentation. Contrast sensitivity was calculated as the inverse function of the pooled cone contrast threshold. ssVECP and both psychophysical contrast sensitivity functions (CSFs) were low-pass functions for red-green gratings. For electrophysiology, the highest contrast sensitivity values were found at 0.4 cpd (1.95 ± 0.15). ssVECP CSF was similar to dynamic psychophysical CSF, while static CSF had higher values ranging from 0.4 to 6 cpd (P < 0.05, ANOVA). Blue-yellow chromatic functions showed no specific tuning shape; however, at high spatial frequencies the evoked potentials showed higher contrast sensitivity than the psychophysical methods (P < 0.05, ANOVA). Evoked potentials can be used reliably to evaluate chromatic red-green CSFs in agreement with psychophysical thresholds, mainly if the same temporal properties are applied to the stimulus. For blue-yellow CSF, correlation between electrophysiology and psychophysics was poor at high spatial frequency, possibly due to a greater effect of chromatic aberration on this kind of stimulus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and ofXpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy.