140 resultados para A-NEUROTOXIN
Resumo:
Coral snakes, the New World Elapidae, are included in the genera Micniroides and Micrurus. The genus Mlcrurus comprises nearly all coral snake species and those which are responsible for human snake-bite accidents. The following generalizations concerning the effects induced by their venoms, and their venom-properties can be made. Coral snake venoms are neurotoxic, producing loss of muscle strenght and death by respiratory paralysis. Local edema and necrosis are not induced nor blood coagulation or hemorrhages. Proteolysis activity is absent or of very low grade. They display phospholipase A2 activity. Nephrotoxic effects are not evoked. The main toxins from elapid venoms are postsynaptic and presynaptic neurotoxins and cardiotoxins. Phospholipases A2 endowed with myonecrotic or cardiotoxin-like properties are important toxic components from some elapid venoms. The mode of action of Micrurus frontalis, M. lemniscatus, M. corallinus and M. fulvius venoms has been investigated in isolated muscle preparations and is here discussed. It is shown that while M. frontalis and M. lemniscatus venoms must contain only neurotoxins that act at the cholinergic end-plate receptor (postsynaptic neurotoxins), M. corallinus venom also inhibits evoked acetylcholine release by the motor nerve endings (presynaptic neurotoxin-like effect) and M. fulvius induces muscle fiber membrane depolarization (cardiotoxin-like effect). The effects produced by M. corallinus and M. fulvius venoms in vivo in dogs and M. frontalis venom in dogs and monkeys are also reported.
Resumo:
The authors report neuromuscular manifestations in a 45-year-old woman after consuming octopus meat (Octopus sp.). The patient presented malaise, paresthesias in perioral and extremity areas, intense muscular weakness and arterial hypotension, followed by severe itch and disseminated cutaneous rash. Gastrointestinal manifestations and fever were not observed, reducing the probability of alimentary poisoning. The presence of muscular and neurological symptoms suggests neurotoxin action, which could have been ingested by the victim from the octopus salivary glands or from an accumulation of toxins in the meat, or by an unknown mechanism. There is little known about toxins of the Octopus genus and this communication is important alert to the possibility of poisoning in humans that eat octopus and its differentiation from alimentary poisonings arising from incorrect conservation of seafood.
Resumo:
Botulism is a rare and potentially lethal illness caused by Clostridium botulinum neurotoxin. We describe the findings of a laboratorial investigation of 117 suspected cases of botulism reported to the surveillance system in Brazil from January 2000 to October 2008. Data on the number and type of samples analyzed, type of toxins identified, reporting of the number of botulism cases and transmission sources are discussed. A total of 193 clinical samples and 81 food samples were analyzed for detection and identification of the botulism neurotoxin. Among the clinical samples, 22 (11.4%) presented the toxin (nine type A, five type AB and eight with an unidentified type); in food samples, eight (9.9%) were positive for the toxin (five type A, one type AB and two with an unidentified type). Of the 38 cases of suspected botulism in Brazil, 27 were confirmed by a mouse bioassay. Laboratorial botulism diagnosis is an important procedure to elucidate cases, especially food-borne botulism, to confirm clinical diagnosis and to identify toxins in food, helping sanitary control measures.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Tick paralysis (TP) occurs worldwide and is caused by a neurotoxin secreted by engorged female ticks that affects the peripheral and central nervous system. The clinical manifestations range from mild or nonspecific symptoms to manifestations similar to Guillain-Barré syndrome, bulbar involvement, and death in 10% of the patients. The diagnosis of TP is clinical. To our knowledge, there are no formal reports of TP in humans in South America, although clusters of TP among hunting dogs in Argentina have been identified recently. In this paper, clinical features of two cases of TP occurring during 1994 in Jujuy Province, Argentina, are described.
Resumo:
The effects of mucosally added Escherichia coli heat stable enterotoxin (STa 30 ng ml-1) on the basal short-circuit current (Isc in µA cm-2) across stripped and unstripped sheets of jejuna and ilea taken from fed, starved (4 days, water ad lib) and undernourished (50% control food intake for 21 days) gerbil (Gerbillus cheesmani) were investigated. The effect of neurotoxin tetrodotoxin (TTX 10 µM) and the effects of replacing chloride by gluconate or the effects of removing bicarbonate from bathing buffers on the maximum increase in Isc induced by STa were also investigated. The maximum increase in Isc which resulted from the addition of STa were significantly higher in jejuna and ilea taken from starved and undernourished gerbils when compared with the fed control both using stripped and unstripped sheets. In the two regions of the small intestine taken from fed and starved animals TTX reduced the maximum increase in Isc induced by STa across unstripped sheets only. Moreover in jejuna and ilea taken from undernourished gerbils TTX reduced significantly the maximum increase in Isc induced by STa across stripped and unstripped sheets. Replacing chloride by gluconate decreased the maximum increase in Isc induced by STa across jejuna and ilea taken from undernourished gerbils only. Removing bicarbonates from bathing buffer decreased the maximum increase in Isc across the jejuna and ilea taken from starved and undernourished gerbils.
Resumo:
Oleoylethanolamide (OEA) is an agonist of the peroxisome proliferator-activated receptor α (PPARα) and has been described to exhibit neuroprotective properties when administered locally in animal models of several neurological disorder models, including stroke and Parkinson's disease. However, there is little information regarding the effectiveness of systemic administration of OEA on Parkinson's disease. In the present study, OEA-mediated neuroprotection has been tested on in vivo and in vitro models of 6-hydroxydopamine (6-OH-DA)-induced degeneration. The in vivo model was based on the intrastriatal infusion of the neurotoxin 6-OH-DA, which generates Parkinsonian symptoms. Rats were treated 2 h before and after the 6-OH-DA treatment with systemic OEA (0.5, 1, and 5 mg/kg). The Parkinsonian symptoms were evaluated at 1 and 4 wk after the development of lesions. The functional status of the nigrostriatal system was studied through tyrosine-hydroxylase (TH) and hemeoxygenase-1 (HO-1, oxidation marker) immunostaining as well as by monitoring the synaptophysin content. In vitro cell cultures were also treated with OEA and 6-OH-DA. As expected, our results revealed 6-OH-DA induced neurotoxicity and behavioural deficits; however, these alterations were less severe in the animals treated with the highest dose of OEA (5 mg/kg). 6-OH-DA administration significantly reduced the striatal TH-immunoreactivity (ir) density, synaptophysin expression, and the number of nigral TH-ir neurons. Moreover, 6-OH-DA enhanced striatal HO-1 content, which was blocked by OEA (5 mg/kg). In vitro, 0.5 and 1 μM of OEA exerted significant neuroprotection on cultured nigral neurons. These effects were abolished after blocking PPARα with the selective antagonist GW6471. In conclusion, systemic OEA protects the nigrostriatal circuit from 6-OH-DA-induced neurotoxicity through a PPARα-dependent mechanism.
Resumo:
The presynaptic plasma membrane (PSPM) of cholinergic nerve terminals was purified from Torpedo electric organ using a large-scale procedure. Up to 500 g of frozen electric organ were fractioned in a single run, leading to the isolation of greater than 100 mg of PSPM proteins. The purity of the fraction is similar to that of the synaptosomal plasma membrane obtained after subfractionation of Torpedo synaptosomes as judged by its membrane-bound acetylcholinesterase activity, the number of Glycera convoluta neurotoxin binding sites, and the binding of two monoclonal antibodies directed against PSPM. The specificity of these antibodies for the PSPM is demonstrated by immunofluorescence microscopy.
Resumo:
Syntaxin 1 and synaptosome-associated protein of 25 kD (SNAP-25) are neuronal plasmalemma proteins that appear to be essential for exocytosis of synaptic vesicles (SVs). Both proteins form a complex with synaptobrevin, an intrinsic membrane protein of SVs. This binding is thought to be responsible for vesicle docking and apparently precedes membrane fusion. According to the current concept, syntaxin 1 and SNAP-25 are members of larger protein families, collectively designated as target-SNAP receptors (t-SNAREs), whose specific localization to subcellular membranes define where transport vesicles bind and fuse. Here we demonstrate that major pools of syntaxin 1 and SNAP-25 recycle with SVs. Both proteins cofractionate with SVs and clathrin-coated vesicles upon subcellular fractionation. Using recombinant proteins as standards for quantitation, we found that syntaxin 1 and SNAP-25 each comprise approximately 3% of the total protein in highly purified SVs. Thus, both proteins are significant components of SVs although less abundant than synaptobrevin (8.7% of the total protein). Immunoisolation of vesicles using synaptophysin and syntaxin specific antibodies revealed that most SVs contain syntaxin 1. The widespread distribution of both syntaxin 1 and SNAP-25 on SVs was further confirmed by immunogold electron microscopy. Botulinum neurotoxin C1, a toxin that blocks exocytosis by proteolyzing syntaxin 1, preferentially cleaves vesicular syntaxin 1. We conclude that t-SNAREs participate in SV recycling in what may be functionally distinct forms.
Resumo:
This study examined the effects of ibotenic acid-induced lesions of the hippocampus, subiculum and hippocampus +/- subiculum upon the capacity of rats to learn and perform a series of allocentric spatial learning tasks in an open-field water maze. The lesions were made by infusing small volumes of the neurotoxin at a total of 26 (hippocampus) or 20 (subiculum) sites intended to achieve complete target cell loss but minimal extratarget damage. The regional extent and axon-sparing nature of these lesions was evaluated using both cresyl violet and Fink - Heimer stained sections. The behavioural findings indicated that both the hippocampus and subiculum lesions caused impairment to the initial postoperative acquisition of place navigation but did not prevent eventual learning to levels of performance almost as effective as those of controls. However, overtraining of the hippocampus + subiculum lesioned rats did not result in significant place learning. Qualitative observations of the paths taken to find a hidden escape platform indicated that different strategies were deployed by hippocampal and subiculum lesioned groups. Subsequent training on a delayed matching to place task revealed a deficit in all lesioned groups across a range of sample choice intervals, but the subiculum lesioned group was less impaired than the group with the hippocampal lesion. Finally, unoperated control rats given both the initial training and overtraining were later given either a hippocampal lesion or sham surgery. The hippocampal lesioned rats were impaired during a subsequent retention/relearning phase. Together, these findings suggest that total hippocampal cell loss may cause a dual deficit: a slower rate of place learning and a separate navigational impairment. The prospect of unravelling dissociable components of allocentric spatial learning is discussed.
Resumo:
Tetanus (TeNT) is a zinc protease that blocks neurotransmission by cleaving the synaptic protein vesicle-associated membrane protein/synaptobrevin. Although its intracellular catalytic activity is well established, the mechanism by which this neurotoxin interacts with the neuronal surface is not known. In this study, we characterize p15s, the first plasma membrane TeNT binding proteins and we show that they are glycosylphosphatidylinositol-anchored glycoproteins in nerve growth factor (NGF)-differentiated PC12 cells, spinal cord cells, and purified motor neurons. We identify p15 as neuronal Thy-1 in NGF-differentiated PC12 cells. Fluorescence lifetime imaging microscopy measurements confirm the close association of the binding domain of TeNT and Thy-1 at the plasma membrane. We find that TeNT is recruited to detergent-insoluble lipid microdomains on the surface of neuronal cells. Finally, we show that cholesterol depletion affects a raft subpool and blocks the internalization and intracellular activity of the toxin. Our results indicate that TeNT interacts with target cells by binding to lipid rafts and that cholesterol is required for TeNT internalization and/or trafficking in neurons.
Resumo:
Directed cell migration and axonal guidance are essential steps in neural development. Both processes are controlled by specific guidance cues that activate the signaling cascades that ultimately control cytoskeletal dynamics. Another essential step in migration and axonal guidance is the regulation of plasmalemma turnover and exocytosis in leading edges and growth cones. However, the cross talk mechanisms linking guidance receptors and membrane exocytosis are not understood. Netrin-1 is a chemoattractive cue required for the formation of commissural pathways. Here, we show that the Netrin-1 receptor deleted in colorectal cancer (DCC) forms a protein complex with the t-SNARE (target SNARE) protein Syntaxin-1 (Sytx1). This interaction is Netrin-1 dependent both in vitro and in vivo, and requires specific Sytx1 and DCC domains. Blockade of Sytx1 function by using botulinum toxins abolished Netrin-1-dependent chemoattraction of axons in mouse neuronal cultures. Similar loss-of-function experiments in the chicken spinal cord in vivo using dominant-negative Sytx1 constructs or RNAi led to defects in commissural axon pathfinding reminiscent to those described in Netrin-1 and DCC loss-of-function models. We also show that Netrin-1 elicits exocytosis at growth cones in a Sytx1-dependent manner. Moreover, we demonstrate that the Sytx1/DCC complex associates with the v-SNARE (vesicle SNARE) tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) and that knockdown of TI-VAMP in the commissural pathway in the spinal cord results in aberrant axonal guidance phenotypes. Our data provide evidence of a new signaling mechanism that couples chemotropic Netrin-1/DCC axonal guidance and Sytx1/TI-VAMP SNARE proteins regulating membrane turnover and exocytosis.
Resumo:
Directed cell migration and axonal guidance are essential steps in neural development. Both processes are controlled by specific guidance cues that activate the signaling cascades that ultimately control cytoskeletal dynamics. Another essential step in migration and axonal guidance is the regulation of plasmalemma turnover and exocytosis in leading edges and growth cones. However, the cross talk mechanisms linking guidance receptors and membrane exocytosis are not understood. Netrin-1 is a chemoattractive cue required for the formation of commissural pathways. Here, we show that the Netrin-1 receptor deleted in colorectal cancer (DCC) forms a protein complex with the t-SNARE (target SNARE) protein Syntaxin-1 (Sytx1). This interaction is Netrin-1 dependent both in vitro and in vivo, and requires specific Sytx1 and DCC domains. Blockade of Sytx1 function by using botulinum toxins abolished Netrin-1-dependent chemoattraction of axons in mouse neuronal cultures. Similar loss-of-function experiments in the chicken spinal cord in vivo using dominant-negative Sytx1 constructs or RNAi led to defects in commissural axon pathfinding reminiscent to those described in Netrin-1 and DCC loss-of-function models. We also show that Netrin-1 elicits exocytosis at growth cones in a Sytx1-dependent manner. Moreover, we demonstrate that the Sytx1/DCC complex associates with the v-SNARE (vesicle SNARE) tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) and that knockdown of TI-VAMP in the commissural pathway in the spinal cord results in aberrant axonal guidance phenotypes. Our data provide evidence of a new signaling mechanism that couples chemotropic Netrin-1/DCC axonal guidance and Sytx1/TI-VAMP SNARE proteins regulating membrane turnover and exocytosis.
Resumo:
Directed cell migration and axonal guidance are essential steps in neural development. Both processes are controlled by specific guidance cues that activate the signaling cascades that ultimately control cytoskeletal dynamics. Another essential step in migration and axonal guidance is the regulation of plasmalemma turnover and exocytosis in leading edges and growth cones. However, the cross talk mechanisms linking guidance receptors and membrane exocytosis are not understood. Netrin-1 is a chemoattractive cue required for the formation of commissural pathways. Here, we show that the Netrin-1 receptor deleted in colorectal cancer (DCC) forms a protein complex with the t-SNARE (target SNARE) protein Syntaxin-1 (Sytx1). This interaction is Netrin-1 dependent both in vitro and in vivo, and requires specific Sytx1 and DCC domains. Blockade of Sytx1 function by using botulinum toxins abolished Netrin-1-dependent chemoattraction of axons in mouse neuronal cultures. Similar loss-of-function experiments in the chicken spinal cord in vivo using dominant-negative Sytx1 constructs or RNAi led to defects in commissural axon pathfinding reminiscent to those described in Netrin-1 and DCC loss-of-function models. We also show that Netrin-1 elicits exocytosis at growth cones in a Sytx1-dependent manner. Moreover, we demonstrate that the Sytx1/DCC complex associates with the v-SNARE (vesicle SNARE) tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) and that knockdown of TI-VAMP in the commissural pathway in the spinal cord results in aberrant axonal guidance phenotypes. Our data provide evidence of a new signaling mechanism that couples chemotropic Netrin-1/DCC axonal guidance and Sytx1/TI-VAMP SNARE proteins regulating membrane turnover and exocytosis.
Resumo:
The paper addresses the epidemiologic data of the death of pigs during the period of 2002 to 2009 following the ingestion of botulinum neurotoxin type C. This neurotoxin was present in food residues originating from restaurant and hotel kitchens, stored in barrels without shelter from the sun and administered in a collective trough without prior thermal treatment. Animals which died at different ages showed clinical signs of botulism characterized by flaccid paralysis, weight loss, anorexia, weakness, lack of coordination, locomotion difficulties with the evolution of lateral recumbency with involuntary urination and defecation. No alterations were observed at postmortem and histological examination. The bioassay with serum neutralization in mice was carried out on samples of intestinal contents from pigs affected and revealed the presence of large quantities of botulinum toxin type C.