996 resultados para 880-05--Kokura-shi (Japan)--Maps.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chong kan ben.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Double leaves, oriental style, in case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Jiaqing er shi nian Shu Wei xu shu ji ke shu shi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Jiaqing wu yin Zhu Dong xu shu ji Ding shi ke shu shi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nei feng you shang: Jiaqing shi si nian juan, zuo xia: De fen hou pu cang ban.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nei feng you shang: Jiaqing geng chen xin juan, zuo xia: Jiang zhou shou ju cang ban.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Daoguang er nian Yao Wentian xu shu ji qi ke shu shi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nei feng you shang juan: Daoguang ji hai xin ke, zuo xia juan: Gua guo wei neng zhai cang ban.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nei feng tian tou juan: Daoguang ji hai zhong qiu juan, zuo xia juan: Hou yuan tang cang ban.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nei feng you shang juan: Daoguang geng zi juan, zuo xia juan: Xiao xian shan fang cang ban.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some issues published in parts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insets: Zhaowa xiang tu -- Nan Yang Qun Dao di xing tu -- Malai Ban Dao xiang tu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-organizing maps (Kohonen 1997) is a type of artificial neural network developed to explore patterns in high-dimensional multivariate data. The conventional version of the algorithm involves the use of Euclidean metric in the process of adaptation of the model vectors, thus rendering in theory a whole methodology incompatible with non-Euclidean geometries. In this contribution we explore the two main aspects of the problem: 1. Whether the conventional approach using Euclidean metric can shed valid results with compositional data. 2. If a modification of the conventional approach replacing vectorial sum and scalar multiplication by the canonical operators in the simplex (i.e. perturbation and powering) can converge to an adequate solution. Preliminary tests showed that both methodologies can be used on compositional data. However, the modified version of the algorithm performs poorer than the conventional version, in particular, when the data is pathological. Moreover, the conventional ap- proach converges faster to a solution, when data is \well-behaved". Key words: Self Organizing Map; Artificial Neural networks; Compositional data

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contributions by various authors.