1000 resultados para 550 Earth sciences


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snowfall during anticyclonic, non-frontal, and foggy conditions is surprising. Because it is often not forecast, it can present a hazard to transport and modify the surface albedo. In this report, we present some observations of snowfall during conditions of freezing fog in the UK during the winter of 2008/09.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Radar studies of nocturnal insect migration have often found that the migrants tend to form well-defined horizontal layers at a particular altitude. 2 In previous short-term studies, nocturnal layers were usually observed to occur at the same altitude as certain meteorological features, most notably at the altitudes of temperature inversions or nocturnal wind jets. 3 Statistical analyses are presented of four years’ data that compared the presence, sharpness and duration of nocturnal layer profiles (observed using continuously-operating entomological radar) with meteorological variables at typical layer altitudes over the UK. 4 Analysis of these large datasets demonstrated that temperature was the foremost meteorological factor persistently associated with the presence and formation of longer-lasting and sharper layers of migrating insects over southern UK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Robust responses and links between the tropical energy and water cycles are investigated using multiple datasets and climate models over the period 1979-2006. Atmospheric moisture and net radiative cooling provide powerful constraints upon future changes in precipitation. While moisture amount is robustly linked with surface temperature, the response of atmospheric net radiative cooling, derived from satellite data, is less coherent. Precipitation trends and relationships with surface temperature are highly sensitive to the data product and the time-period considered. Data from the Special Sensor Microwave Imager (SSM/I) produces the strongest trends in precipitation and response to warming of all the datasets considered. The tendency for moist regions to become wetter while dry regions become drier in response to warming is captured by both observations and models. Citation: John, V. O., R. P. Allan, and B. J. Soden (2009), How robust are observed and simulated precipitation responses to tropical ocean warming?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relationships between clear-sky longwave radiation and aspects of the atmospheric hydrological cycle are quantified in models, reanalyses, and observations over the period 1980-2000. The robust sensitivity of clear-sky surface net longwave radiation (SNLc) to column-integrated water vapor (CWV) of 1-1.5 Wm(-2) mm(-1) combined with the positive relationship between CWV and surface temperature (T-s) explains substantial increases in clear-sky longwave radiative cooling of the atmosphere (Q(LWc)) to the surface over the period. Clear-sky outgoing longwave radiation (OLRc) is highly sensitive to changes in aerosol and greenhouse gas concentrations in addition to temperature and humidity. Over tropical ocean regions of mean descent, Q(LWc) increases with T-s at similar to 3.5-5.5 W m(-2) K-1 for reanalyses, estimates derived from satellite data, and models without volcanic forcing included. Increased Q(LWc) with warming across the tropical oceans helps to explain model ensemble mean increases in precipitation of 0.1-0.15 mm day(-1) K-1, which are primarily determined by ascent regions where precipitation increases at the rate expected from the Clausius-Clapeyron equation. The implications for future projections in the atmospheric hydrological cycle are discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The longwave radiative cooling of the clear-sky atmosphere (Q(LWc)) is a crucial component of the global hydrological cycle and is composed of the clear-sky outgoing longwave radiation to space (OLRc) and the net downward minus upward clear-sky longwave radiation to the surface (SNLc). Estimates of QLWc from reanalyses and observations are presented for the period 1979-2004. Compared to other reanalyses data sets, the European Centre for Medium-range Weather Forecasts 40-year reanalysis (ERA40) produces the largest Q(LWc) over the tropical oceans (217 W m(-2)), explained by the least negative SNLc. On the basis of comparisons with data derived from satellite measurements, ERA40 provides the most realistic QLWc climatology over the tropical oceans but exhibits a spurious interannual variability for column integrated water vapor (CWV) and SNLc. Interannual monthly anomalies of QLWc are broadly consistent between data sets with large increases during the warm El Nino events. Since relative humidity ( RH) errors applying throughout the troposphere result in compensating effects on the cooling to space and to the surface, they exert only a marginal effect on QLWc. An observed increase in CWV with surface temperature of 3 kg m(-2) K-1 over the tropical oceans is important in explaining a positive relationship between QLWc and surface temperature, in particular over ascending regimes; over tropical ocean descending regions this relationship ranges from 3.6 to 4.6 +/- 0.4 W m(-2) K-1 for the data sets considered, consistent with idealized sensitivity tests in which tropospheric warming is applied and RH is held constant and implying an increase in precipitation with warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Processes in the climate system that can either amplify or dampen the climate response to an external perturbation are referred to as climate feedbacks. Climate sensitivity estimates depend critically on radiative feedbacks associated with water vapor, lapse rate, clouds, snow, and sea ice, and global estimates of these feedbacks differ among general circulation models. By reviewing recent observational, numerical, and theoretical studies, this paper shows that there has been progress since the Third Assessment Report of the Intergovernmental Panel on Climate Change in (i) the understanding of the physical mechanisms involved in these feedbacks, (ii) the interpretation of intermodel differences in global estimates of these feedbacks, and (iii) the development of methodologies of evaluation of these feedbacks (or of some components) using observations. This suggests that continuing developments in climate feedback research will progressively help make it possible to constrain the GCMs’ range of climate feedbacks and climate sensitivity through an ensemble of diagnostics based on physical understanding and observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insects migrating at high altitude over southern Britain have been continuously monitored by automatically-operating, vertical-looking radars over a period of several years. During some occasions in the summer months, the migrants were observed to form well-defined layer concentrations, typically at heights of 200-400 m, in the stable night-time atmosphere. Under these conditions, insects are likely to have control over their vertical movements and are selecting flight heights which are favourable for long-range migration. We therefore investigated the factors influencing the formation of these insect layers by comparing radar measurements of the vertical distribution of insect density with meteorological profiles generated by the UK Met. Office’s Unified Model (UM). Radar-derived measurements of mass and displacement speed, along with data from Rothamsted Insect Survey light traps provided information on the identity of the migrants. We present here three case studies where noctuid and pyralid moths contributed substantially to the observed layers. The major meteorological factors influencing the layer concentrations appeared to be: (a) the altitude of the warmest air, (b) heights corresponding to temperature preferences or thresholds for sustained migration and (c), on nights when air temperatures are relatively high, wind-speed maxima associated with the nocturnal jet. Back-trajectories indicated that layer duration may have been determined by the distance to the coast. Overall, the unique combination of meteorological data from the UM and insect data from entomological radar described here show considerable promise for systematic studies of high-altitude insect layering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insects migrating over two sites in southern UK (Malvern in Worcestershire, and Harpenden in Hertfordshire) have been monitored continuously with nutating vertical-looking radars (VLRs) equipped with powerful control and analysis software. These observations make possible, for the first time, a systematic investigation of the vertical distribution of insect aerial density in the atmosphere, over temporal scales ranging from the short (instantaneous vertical profiles updated every 15 min) to the very long (profiles aggregated over whole seasons or even years). In the present paper, an outline is given of some general features of insect stratification as revealed by the radars, followed by a description of occasions during warm nights in the summer months when intense insect layers developed. Some of these nocturnal layers were due to the insects flying preferentially at the top of strong surface temperature inversions, and in other cases, layering was associated with higher-altitude temperature maxima, such as those due to subsidence inversions. The layers were formed from insects of a great variety of sizes, but peaks in the mass distributions pointed to a preponderance of medium-sized noctuid moths on certain occasions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study uses large-eddy simulation (LES) to investigate the characteristics of Langmuir turbulence through the turbulent kinetic energy (TKE) budget. Based on an analysis of the TKE budget a velocity scale for Langmuir turbulence is proposed. The velocity scale depends on both the friction velocity and the surface Stokes drift associated with the wave field. The scaling leads to unique profiles of nondimensional dissipation rate and velocity component variances when the Stokes drift of the wave field is sufficiently large compared to the surface friction velocity. The existence of such a scaling shows that Langmuir turbulence can be considered as a turbulence regime in its own right, rather than a modification of shear-driven turbulence. Comparisons are made between the LES results and observations, but the lack of information concerning the wave field means these are mainly restricted to comparing profile shapes. The shapes of the LES profiles are consistent with observed profiles. The dissipation length scale for Langmuir turbulence is found to be similar to the dissipation length scale in the shear-driven boundary layer. Beyond this it is not possible to test the proposed scaling directly using available data. Entrainment at the base of the mixed layer is shown to be significantly enhanced over that due to normal shear turbulence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of a large meridional submarine ridge on the decay of Agulhas rings is investigated with a 1 and 2-layer setup of the isopycnic primitive-equation ocean model MICOM. In the single-layer case we show that the SSH decay of the ring is primarily governed by bottom friction and secondly by the radiation of Rossby waves. When a topographic ridge is present, the effect of the ridge on SSH decay and loss of tracer from the ring is negligible. However, the barotropic ring cannot pass the ridge due to energy and vorticity constraints. In the case of a two-layer ring the initial SSH decay is governed by a mixed barotropic–baroclinic instability of the ring. Again, radiation of barotropic Rossby waves is present. When the ring passes the topographic ridge, it shows a small but significant stagnation of SSH decay, agreeing with satellite altimetry observations. This is found to be due to a reduction of the growth rate of the m = 2 instability, to conversions of kinetic energy to the upper layer, and to a decrease in Rossby-wave radiation. The energy transfer is related to the fact that coherent structures in the lower layer cannot pass the steep ridge due to energy constraints. Furthermore, the loss of tracer from the ring through filamentation is less than for a ring moving over a flat bottom, related to a decrease in propagation speed of the ring. We conclude that ridges like the Walvis Ridge tend to stabilize a multi-layer ring and reduce its decay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the many models developed for phosphorus concentration prediction at differing spatial and temporal scales, there has been little effort to quantify uncertainty in their predictions. Model prediction uncertainty quantification is desirable, for informed decision-making in river-systems management. An uncertainty analysis of the process-based model, integrated catchment model of phosphorus (INCA-P), within the generalised likelihood uncertainty estimation (GLUE) framework is presented. The framework is applied to the Lugg catchment (1,077 km2), a River Wye tributary, on the England–Wales border. Daily discharge and monthly phosphorus (total reactive and total), for a limited number of reaches, are used to initially assess uncertainty and sensitivity of 44 model parameters, identified as being most important for discharge and phosphorus predictions. This study demonstrates that parameter homogeneity assumptions (spatial heterogeneity is treated as land use type fractional areas) can achieve higher model fits, than a previous expertly calibrated parameter set. The model is capable of reproducing the hydrology, but a threshold Nash-Sutcliffe co-efficient of determination (E or R 2) of 0.3 is not achieved when simulating observed total phosphorus (TP) data in the upland reaches or total reactive phosphorus (TRP) in any reach. Despite this, the model reproduces the general dynamics of TP and TRP, in point source dominated lower reaches. This paper discusses why this application of INCA-P fails to find any parameter sets, which simultaneously describe all observed data acceptably. The discussion focuses on uncertainty of readily available input data, and whether such process-based models should be used when there isn’t sufficient data to support the many parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the importance of microphysical cloud processes on the climate system, some topics are under-explored. For example, few measurements of droplet charges in nonthunderstorm clouds exist. Balloon carried charge sensors can be used to provide new measurements. A charge sensor is described for use with meteorological balloons, which has been tested over a range of atmospheric temperatures from -60 to 20 degrees C, in cloudy and clear air. The rapid time response of the sensor (to >10 V s(-1)) permits charge densities from 100 fC m(-3) to 1 nC m(-3) to be determined, which is sufficient for it to act as a cloud edge charge detector at weakly charged horizontal cloud boundaries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The shallow water equations are solved using a mesh of polygons on the sphere, which adapts infrequently to the predicted future solution. Infrequent mesh adaptation reduces the cost of adaptation and load-balancing and will thus allow for more accurate mapping on adaptation. We simulate the growth of a barotropically unstable jet adapting the mesh every 12 h. Using an adaptation criterion based largely on the gradient of the vorticity leads to a mesh with around 20 per cent of the cells of a uniform mesh that gives equivalent results. This is a similar proportion to previous studies of the same test case with mesh adaptation every 1–20 min. The prediction of the mesh density involves solving the shallow water equations on a coarse mesh in advance of the locally refined mesh in order to estimate where features requiring higher resolution will grow, decay or move to. The adaptation criterion consists of two parts: that resolved on the coarse mesh, and that which is not resolved and so is passively advected on the coarse mesh. This combination leads to a balance between resolving features controlled by the large-scale dynamics and maintaining fine-scale features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although climate models have been improving in accuracy and efficiency over the past few decades, it now seems that these incremental improvements may be slowing. As tera/petascale computing becomes massively parallel, our legacy codes are less suitable, and even with the increased resolution that we are now beginning to use, these models cannot represent the multiscale nature of the climate system. This paper argues that it may be time to reconsider the use of adaptive mesh refinement for weather and climate forecasting in order to achieve good scaling and representation of the wide range of spatial scales in the atmosphere and ocean. Furthermore, the challenge of introducing living organisms and human responses into climate system models is only just beginning to be tackled. We do not yet have a clear framework in which to approach the problem, but it is likely to cover such a huge number of different scales and processes that radically different methods may have to be considered. The challenges of multiscale modelling and petascale computing provide an opportunity to consider a fresh approach to numerical modelling of the climate (or Earth) system, which takes advantage of the computational fluid dynamics developments in other fields and brings new perspectives on how to incorporate Earth system processes. This paper reviews some of the current issues in climate (and, by implication, Earth) system modelling, and asks the question whether a new generation of models is needed to tackle these problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GODIVA2 is a dynamic website that provides visual access to several terabytes of physically distributed, four-dimensional environmental data. It allows users to explore large datasets interactively without the need to install new software or download and understand complex data. Through the use of open international standards, GODIVA2 maintains a high level of interoperability with third-party systems, allowing diverse datasets to be mutually compared. Scientists can use the system to search for features in large datasets and to diagnose the output from numerical simulations and data processing algorithms. Data providers around Europe have adopted GODIVA2 as an INSPIRE-compliant dynamic quick-view system for providing visual access to their data.