981 resultados para 4000


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The BRAF gene is frequently somatically altered in malignant melanoma. A majority of variations are at the valine 600 residue leading to a V600E substitution that constitutively activates the kinase. We screened 4000 patient and control DNAs for germ-line variations at the valine 600 residue. Methods: We developed a novel assay by adapting single-base variation assays and software for MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry to screen for all 5 reported variants at codon 600 of the BRAF gene. We screened a case-control collection comprising samples from 1082 melanoma patients and 154 of their unaffected relatives from 1278 families and from 2744 individuals from 659 unselected twin families with no history of melanoma. A panel of 66 melanoma cell lines was used for variation-positive controls. Results: All melanoma cell lines that we had found previously to carry a codon 600 variation were verified in this study. Three of the 4 possible variants (V600E n = 47, V600K n = 2, V600R n = 1) were detected, but no case of V600D was available. No germ-line variants were found in the samples from the 3980 melanoma patients or from the control individuals. Conclusions: This new assay is a high-throughput, automated alternative to standard sequencing and can be used as a rapid initial screen for somatic variants associated with melanoma. Germ-line variants at valine 600 are unlikely to exist and do not contribute to the reported role of the BRAF gene in melanoma predisposition. (c) 2006 American Association for Clinical Chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: This study evaluated the influence of light sources and immersion media on the color stability of a nanofilled composite resin. MATERIAL AND METHODS: Conventional halogen, high-power-density halogen and high-power-density light-emitting diode (LED) units were used. There were 4 immersion media: coffee, tea, Coke® and artificial saliva. A total of 180 specimens (10 mm x 2 mm) were prepared, immersed in artificial saliva for 24 h at 37±1ºC, and had their initial color measured with a spectrophotometer according to the CIELab system. Then, the specimens were immersed in the 4 media during 60 days. Data from the color change and luminosity were collected and subjected to statistical analysis by the Kruskall-Wallis test (p<0.05). For immersion time, the data were subjected to two-way ANOVA test and Fisher's test (p<0.05). RESULTS: High-power-density LED (ΔE=1.91) promoted similar color stability of the composite resin to that of the tested halogen curing units (Jet Lite 4000 plus - ΔE=2.05; XL 3000 - ΔE=2.28). Coffee (ΔE=8.40; ΔL=-5.21) showed the highest influence on color stability of the studied composite resin. CONCLUSION: There was no significant difference in color stability regardless of the light sources, and coffee was the immersion medium that promoted the highest color changes on the tested composite resin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study was designed to evaluate the effect of drag reducer polymers (DRP) on arteries from normotensive (Wistar) and spontaneously hypertensive rats (SHR). Polyethylene glycol (PEG 4000 at 5000 ppm) was perfused in the tail arterial bed with (E+) and without endothelium (E-) from male, adult Wistar (N = 14) and SHR (N = 13) animals under basal conditions (constant flow at 2.5 mL/min). In these preparations, flow-pressure curves (1.5 to 10 mL/min) were constructed before and 1 h after PEG 4000 perfusion. Afterwards, the tail arterial bed was fixed and the internal diameters of the arteries were then measured by microscopy and drag reduction was assessed based on the values of wall shear stress (WSS) by computational simulation. In Wistar and SHR groups, perfusion of PEG 4000 significantly reduced pulsatile pressure (Wistar/E+: 17.5 ± 2.8; SHR/E+: 16.3 ± 2.7%), WSS (Wistar/E+: 36; SHR/E+: 40%) and the flow-pressure response. The E- reduced the effects of PEG 4000 on arteries from both groups, suggesting that endothelial damage decreased the effect of PEG 4000 as a DRP. Moreover, the effects of PEG 4000 were more pronounced in the tail arterial bed from SHR compared to Wistar rats. In conclusion, these data demonstrated for the first time that PEG 4000 was more effective in reducing the pressure-flow response as well as WSS in the tail arterial bed of hypertensive than of normotensive rats and these effects were amplified by, but not dependent on, endothelial integrity. Thus, these results show an additional mechanism of action of this polymer besides its mechanical effect through the release and/or bioavailability of endothelial factors.