186 resultados para 3He
Resumo:
We have measured the 3He/4He and 20Ne/4He ratios of gases dissolved in the pore water in sediments at two sites in the Nankai Trough (Site 583) and the Japan Trench (Site 584). The 3He/4He and 20Ne/4He ratios vary from 0.215 * 10**-6 to 1.23 * 10**-6 and from 50 * 10**-3 to 2700 * 10**-3, respectively. These values can be explained by mixing two components, one from the atmosphere and one with a 3He/4He ratio of (0.2 to 0.3) * 10**-6. The latter component may be derived from the ocean crust near the subduction zone.
Resumo:
We calculate the differential cross section for weak electron scattering reaction, e + 3He-' 3H + ve, for energies from 100 MeV to 6 GeV as a function of outgoing nucleus angle from 0 to n/2 radians. We find that the differential cross section at low [q2] increases with electron energy from 0.1 GeV to 6.0 GeV, such that the peak value at 6.0 GeV is approximately 3.2 x 10-40 cm 2 / ster, a factor of 10 larger than the peak value at 0.1 GeV. We also find that the width of the peak falls very rapidly with increasing electron energy. At high [q2] we find that the differential cross section falls by approximately three orders of magnitude making experimental observation at this time unlikely. The contributions of the individual form factors are obtained for electron energies of 0.5GeV and 2.0 GeV. It is found that at low [q2] the form factors, FA(q2) and Fv(q2), make contributions of similar size to the differential cross section and might be simultaneously determined , but for the case of FM(q2) we find that the contribution is too small to determine. It is also found that at large [q2] values, the contribution of FM(q2) is substantially enhanced , but that the cross section is probably too small to enable a direct determination of FM(q2).
Resumo:
The subject of quark transverse spin and transverse momentum distribution are two current research frontier in understanding the spin structure of the nucleons. The goal of the research reported in this dissertation is to extract new information on the quark transversity distribution and the novel transverse-momentum-dependent Sivers function in the neutron. A semi-inclusive deep inelastic scattering experiment was performed at the Hall A of the Jefferson laboratory using 5.9 GeV electron beam and a transversely polarized ^{3}He target. The scattered electrons and the produced hadrons (pions, kaons, and protons) were detected in coincidence with two large magnetic spectrometers. By regularly flipping the spin direction of the transversely polarized target, the single-spin-asymmetry (SSA) of the semi-inclusive deep inelastic reaction ^{3}He^{uparrow}(e,e'h^{\pm})X was measured over the kinematic range 0.13 < x < 0.41 and 1.3 < Q^{2} < 3.1 (GeV)^{2}. The SSA contains several different azimuthal angular modulations which are convolutions of quarks distribution functions in the nucleons and the quark fragmentation functions into hadrons. It is from the extraction of the various ``moments'' of these azimuthal angular distributions (Collins moment and Sivers moment) that we obtain information on the quark transversity distribution and the novel T-odd Sivers function. In this dissertation, I first introduced the theoretical background and experimental status of nucleon spins and the physics of SSA. I will then present the experimental setup and data collection of the JLab E06-010 experiment. Details of data analysis will be discussed next with emphasis on the kaon particle identification and the Ring-Imaging Cherenkov detector which are my major responsibilities in this experiment. Finally, results on the kaon Collins and Sivers moments extracted from the Maximum Likelihood method will be presented and interpreted. I will conclude with a discussion on the future prospects for this research.
Resumo:
Deep inelastic neutron scattering measurements on liquid 3He-4He mixtures in the normal phase have been performed on the VESUVIO spectrometer at the ISIS pulsed neutron source at exchanged wave vectors of about q≃120.0Å-1. The neutron Compton profiles J(y) of the mixtures were measured along the T=1.96K isotherm for 3He concentrations, x, ranging from 0.1 to 1.0 at saturated vapor pressures. Values of kinetic energies 〈T〉 of 3He and 4He atoms as a function of x, 〈T〉(x), were extracted from the second moment of J(y). The present determinations of 〈T〉(x) confirm previous experimental findings for both isotopes and, in the case of 3He, a substantial disagreement with theory is found. In particular 〈T〉(x) for the 3He atoms is found to be independent of concentration yielding a value 〈T〉3(x=0.1)≃12K, much lower than the value suggested by the most recent theoretical estimates of approximately 19 K.
Resumo:
To explain the ^(26)Mg isotopic anomaly seen in meteorites (^(26)Al daughter) as well as the observation of 1809-keV γ rays in the interstellar medium (live decay of 26Al) one must know, among other things, the destruction rate of ^(26)Al. Properties of states in ^(27)Si just above the ^(26)Al + p mass were investigated to determine the destruction rate of ^(26)Al via the ^(26)Al(p,γ)^(27)Si reaction at astrophysical temperatures.
Twenty micrograms of ^(26)Al were used to produce two types of Al_2O_3 targets by evaporation of the oxide. One was onto a thick platinum backing suitable for (p,γ) work, and the other onto a thin carbon foil for the (^3He,d) reaction.
The ^(26)Al(p,γ)^(27)Si excitation function, obtained using a germanium detector and voltage-ramped target, confirmed known resonances and revealed new ones at 770, 847, 876, 917, and 928 keV. Possible resonances below the lowest observed one at E_p = 286 keV were investigated using the ^(26)Al(^3He,d)^(27)Si proton-transfer reaction. States in 27Si corresponding to 196- and 286-keV proton resonances were observed. A possible resonance at 130 keV (postulated in prior work) was shown to have a strength of wγ less than 0.02 µeV.
By arranging four large Nal detector as a 47π calorimeter, the 196-keV proton resonance, and one at 247 keV, were observed directly, having wγ = 55± 9 and 10 ± 5 µeV, respectively.
Large uncertainties in the reaction rate have been reduced. At novae temperatures, the rate is about 100 times faster than that used in recent model calculations, casting some doubt on novae production of galactic ^(26)Al.
Resumo:
Nile tilapia weighing 8.29-11.02 g were fed a practical diet at seven ration levels (starvation, 0.5, 1, 2, 3, 4% body weight per day and satiation) twice a day at 30 degrees C. Feed consumption, apparent digestibility, nitrogenous excretion and growth were determined directly, and heat production was calculated by difference of energy budget. The relationship between specific growth rate in wet weight (SGR(w), percentage per day) and ration size (RL, percentage per day) was a decelerating curve described as SGR(w) = 2.98 (1 - e(-0.61(RL-0.43))). The apparent digestibility coefficients for dry matter and protein showed a decreasing pattern with increasing ration while the apparent digestibility coefficient of energy was not significantly affected by ration size. The proportion of gross energy intake lost in nitrogenous excretion tended to decrease with increasing ration. Feed efficiency was highest, and the proportion of gross energy intake channelled to heat production was lowest, at an intermediate ration level (2% per day). The energy budget at the satiation level was: 100IE = 16.9FE + 1.2(ZE + UE) + 62.3HE + 19.6RE, where IE, FE, (ZE + UE), HE and RE represent gross energy intake, faecal energy, excretory (non-faecal) energy loss, heat production and recovered energy (growth), respectively. (C) 1997 Elsevier Science B.V.
Resumo:
系统研究了 3 0MeV u40 Ar+ 1 1 2 ,1 2 4 Sn反应中的轻粒子同位素产额比随角度和初始激发能的变化关系 .对于两个反应体系 ,均观察到3He 4He和6Li 7Li的产额比随角度的增加而增加 ,6He 4He和8Li 7Li随角度的增加而减小 .统计发射的运动学效应不能完全符合实验结果 .各种单同位素产额比与靶核的N Z比有关 ,表现出同位旋效应 ,而由双同位素比提取的核温度几乎没有靶核相关性
Resumo:
本文首先介绍了当前核物理的热点问题之一,放射性核束物理中的对称能密度依赖性问题。讨论了对称能的概念、研究意义、介绍了了重离子碰撞输运模型IBUU04。接下来,文章主要研究的是重离子反应中粒子发射的同位旋效应,从而进一步研究对称能的信息。基于IBUU04输运模型,模拟了Sn的两种同位素124Sn+124Sn和112Sn+112Sn在束流能量为50MeV每核子,碰撞参数为2 fm,4 fm,8 fm 的核反应。利用反应的数据,分析了n/p和双n/p的对称能效应以及碰撞参数的依赖性。结果表明:在大碰撞参数的碰撞中,高能核子的双中质比有很明显的对称能效应。同时,还研究了能量为400MeV/A,Sn的同位素的反应中π介子的产生,π-/π+、双π-/π+ 的对称能效应。文章的结尾,我们讨论了A=3的镜像核t和3He发射的对称能效应及碰撞参数依赖性,t-3He流的对称能效应,t/3He同n/p的发射关联。结果表明:在丰中子反应系统,中心碰撞下t/3He同n/p有着关联;大碰撞参数下t/3He有较好的对称能效应,t-3He相对流和微分流有着较好的对称能效应。最后,我们给出了本文的基本结论,就当前工作中的问题和今后发展的方向做出了的展望
Resumo:
本文在碎裂反应实验的基础上研究了原子核的团簇结构以及晕核的特性。由兰州放射性束流线(RIBLL)提供的6He和6Li次级束与Be靶的反应,用24单元的CsI(Tl)阵列探测器测量了6He和6Li的碎裂产物的能量以及小范围内的角分布。用脉冲形状的方法鉴别出了6He与6Li的轻带电粒子碎片。通过重构不变质量谱的方法得到了RGM预言的6He和6Li的3核子共振态。拟合实验数据发现6Li在Ex=22.9MeV和Ex=30.3MeV出现t+3He团簇共振态,6He在Ex=19.2MeV和Ex=29.8MeV出现t+t团簇共振态。并且与理论以及其它的实验的结果进行了比较。这是在实验上首次通过重构不变质量谱的方法直接观测到6He和6Li的三核子共振态。比较了6He和6Li的碎片产生几率,结果表明丰中子的6He产生丰中子碎片的几率要比6Li大,而产生缺中子碎片的几率要比6Li低,结论与BLE的计算是一致的。通过比较6He和6Li反应产生3He和3H的截面角分布,发现丰中子核反应容易产生丰中子的碎片这种现象在前角区更为敏感,随着角度的增大差别逐渐变小。因此前角区的3H与3He的发射产额比是一个鉴别晕核的灵敏探针。用双碎片关联和电粒子产额估算了6He碎裂各出射道的分支比,还估算了6Li碎裂成双带电粒子出射道的相对比例。由出射道的分支比估算了自由发射的中子质子比,并且与QMD的结果进行了比较,发现晕核的自由发射中子质子比要比稳定核大,这也可作为鉴别晕核的一种探针。另外用同位旋相关的BLE(Boltzmann-Langevin Equation)模型计算了轻丰中子核反应中子团簇集团产生的截面,发现3,4n团簇的截面最大,其中4n的产生截面与实验值相近。还计算了丰质子核反应的轻带电粒子发射的同位旋效应,发现质子晕核反应中轻带电粒子的产额相对于稳定核会突然的增大。这也为寻找和判断晕核结构提供了新的手段
Resumo:
针对①中能反应中同位旋自由度是否达到平衡,②同位旋自由度对几中不同方法测量的核温度是否有影响 这两个基本问题,设计了用30和35MeV/u ~(36,40)Ar轰击~(112,124)Sn反应的实验方案。得到如下结果:对于前角5°处的耗散弹核碎裂产物,丰中子同位素与稳定核的产额比随产物出射动能的增加而减小,而丰质子子同位素与稳定核的产额比随动能的增加而增加,呈现明显的剪刀差分布特性。随耗散时间的增大,产物的平均中质比逐渐由弹核的平均中质比向系统的平均中质比过渡。这个结果说明在该反应中,同位旋自由度没有达到完全平衡。而对于20°处的DIC产物,上述剪刀差分布特性变得更不明显,这是同位旋自由度由非平衡向平衡过渡的表现。后角轻粒子的能谱分析表明,初始热核的同位旋会影响斜率核温度的提取,由于丰中子轻粒子~6He在~(40)Ar + ~(112)Sn系统中的蒸发被抑制,相比~(40)Ar + ~(112)Sn而言,其蒸发比较容易发生在衰变链早期,因此提取的温度偏高,同样,丰质子轻粒子~3He的温度在~(40)Ar + ~(112)Sn中略高。但中后角的同位素产额分析表明,反应系统的同位旋对双同位素比核温度几乎没有影响。核温度作为热核的热力学量,是独立于测量方法的,这种不同的方法得出的差异主要来源于同位旋对衰变机制的影响。作为一个尝试,将中高能反应中的熵的提取推广到这个能区,发现两个系统的熵几乎一致。在量子统计模型框架下,考察核温度与熵的关系发现,~(40)Ar + ~(112)Sn反应的挤出时刻密度略高于~(40)Ar + ~(112)Sn。