984 resultados para 34 cal ka BP
Resumo:
Five long piston cores collected from different subbasins of the Aegean Sea constitute the primary source of data for this PhD thesis. This study is the first to document a continuous paleoceanographic and paleoclimatic record of the Aegean Sea since the last interglacial. The chronostratigraphic reconstructions of the cored sediments based on organic carbon contents, stratigraphic position of known ash layers and oxygen isotopic curve matching collectively demonstrate the presence of sapropel S1 and MISS sapropels S3, S4 and S5 in the Aegean Sea subbasins. Generally, the organic carbon (TOC wt%) contents in sapropels range between 0.8% and 2% with highest concentrations of 9-13% in sapropels S4 and S5. Average sedimentation rates range between 4.7 and 11.8 cmlka with highest rates being observed in Euboea and North Ikaria basins (9.8 and 11.8 cm lka, respectively). The timing of the onset of sapropels S4 and S5 mostly predate those in the eastern Mediterranean with ages ranging from 106.4-105.6 and 128.6-128.4 ka BP, respectively. On the other hand, the initiation of the onset of sapropel S3 (i.e., 83.2-80.4 ka BP) seems to agree with its Mediterranean counterparts, which highlights the heterogeneity of the Aegean Sea subbasins in terms of rapid vs. lagged response to changing climatic conditions. The sapropel initiations appear to be synchronous across the Aegean Sea; whereas, the terminations display a wider temporal variability implying that the cessation of sapropels is controlled both by the amplitude of paleoclimatic changes and the physiography/location ofthe subbasins. Quantitative variations in the planktonic faunal assemblages exhibit a sequence of bioevents during the last -130,000 years which allow identification of four major biozones. The distributional patterns of the most significant taxa demonstrate similar trends among all core localities suggesting that the major changes in the planktonic foraminifera assemblages have taken place rather synchronously in the Aegean Sea. Sapropels S3, S4 and S5 were deposited under similar hydrographic conditions during which a distinct deep chlorophyll maximum (DCM) layer was established. This situation points to a stratified water column and increased export productivity during times of sapropel formation. On the other hand, the faunal contrast between Sl and older sapropels indicates that the former was developed in the absence of a DCM layer, lacking a deep phytoplankton assemblage. Under such conditions, oxygen advection via intermediate water flow must have been significantly reduced which implies significant stagnation. Sapropels are interpreted to have been deposited under normal marine conditions with temporary establishment of semi-euxinic bottom water conditions. Both marine and terrestrial organic matter contributed equally to MISS sapropels. In addition, organic carbon isotopic values across sapropels are more depleted than those in the eastern Mediterranean which, in tum, suggests enhanced riverine input during their deposition. Primary productivity calculations show that, particularly for sapropels with very high TOC values, both preservation and increased productivity are imperative in order to deposit sapropels with very high organic carbon contents (i.e., up to 13%).
Resumo:
Integrated interpretation of multi-beam bathymetric, sediment-penetrating acoustic (PARASOUND) and seismic data show a multiple slope failure on the northern European continental margin, north of Spitsbergen. The first slide event occurred during MIS 3 around 30 cal. ka BP and was characterised by highly dynamic and rapid evacuation of ca. 1250 km**3 of sediment from the lower to the upper part of the continental slope. During this event, headwalls up to 1600 m high were created and ca. 1150 km**3 material from hemi-pelagic sediments and from the lower pre-existing trough mouth fan has been entrained and transported into the semi-enclosed Sophia Basin. This megaslide event was followed by a secondary evacuation of material to the Nansen Basin by funnelling of the debris through the channel between Polarstern Seamount and the adjacent continental slope. The main slide debris is overlain by a set of fining-upward sequences as evidence for the associated suspension cloud and following minor failure events. Subsequent adjustment of the eastern headwalls led to failure of rather soft sediments and creation of smaller debris flows that followed the main slide surficial topography. Discharge of the Hinlopen ice stream during the Last Glacial Maximum and the following deglaciation draped the central headwalls and created a fan deposit of glacigenic debris flows.
Resumo:
The continental shelf adjacent to the Río de la Plata (RdlP) exhibits extremely complex hydrographic and ecological characteristics which are of great socioeconomic importance. Since the long-term environmental variations related to the atmospheric (wind fields), hydrologic (freshwater plume), and oceanographic (currents and fronts) regimes are little known, the aim of this study is to reconstruct the changes in the terrigenous input into the inner continental shelf during the late Holocene period (associated with the RdlP sediment discharge) and to unravel the climatic forcing mechanisms behind them. To achieve this, we retrieved a 10 m long sediment core from the RdlP mud depocenter at 57 m water depth (GeoB 13813-4). The radiocarbon age control indicated an extremely high sedimentation rate of 0.8 cm per year, encompassing the past 1200 years (AD 750-2000). We used element ratios (Ti / Ca, Fe / Ca, Ti / Al, Fe / K) as regional proxies for the fluvial input signal and the variations in relative abundance of salinity-indicative diatom groups (freshwater versus marine-brackish) to assess the variability in terrigenous freshwater and sediment discharges. Ti / Ca, Fe / Ca, Ti / Al, Fe / K and the freshwater diatom group showed the lowest values between AD 850 and 1300, while the highest values occurred between AD 1300 and 1850. The variations in the sedimentary record can be attributed to the Medieval Climatic Anomaly (MCA) and the Little Ice Age (LIA), both of which had a significant impact on rainfall and wind patterns over the region. During the MCA, a weakening of the South American summer monsoon system (SAMS) and the South Atlantic Convergence Zone (SACZ), could explain the lowest element ratios (indicative of a lower terrigenous input) and a marine-dominated diatom record, both indicative of a reduced RdlP freshwater plume. In contrast, during the LIA, a strengthening of SAMS and SACZ may have led to an expansion of the RdlP river plume to the far north, as indicated by higher element ratios and a marked freshwater diatom signal. Furthermore, a possible multidecadal oscillation probably associated with Atlantic Multidecadal Oscillation (AMO) since AD 1300 reflects the variability in both the SAMS and SACZ systems.
Stable carbon isotope ratios of carbon dioxide from EDC and Berkner Island ice cores for 40-50 ka BP
Resumo:
The stable carbon isotopic signature of carbon dioxide (d13CO2) measured in the air occlusions of polar ice provides important constraints on the carbon cycle in past climates. In order to exploit this information for previous glacial periods, one must use deep, clathrated ice, where the occluded air is preserved not in bubbles but in the form of air hydrates. Therefore, it must be established whether the original atmospheric d13CO2 signature can be reconstructed from clathrated ice. We present a comparative study using coeval bubbly ice from Berkner Island and ice from the bubble-clathrate transformation zone (BCTZ) of EPICA Dome C (EDC). In the EDC samples the gas is partitioned into clathrates and remaining bubbles as shown by erroneously low and scattered CO2 concentration values, presenting a worst-case test for d13CO2 reconstructions. Even so, the reconstructed atmospheric d13CO2 values show only slightly larger scatter. The difference to data from coeval bubbly ice is statistically significant. However, the 0.16 per mil magnitude of the offset is small for practical purposes, especially in light of uncertainty from non-uniform corrections for diffusion related fractionation that could contribute to the discrepancy. Our results are promising for palaeo-atmospheric studies of d13CO2 using a ball mill dry extraction technique below the BCTZ of ice cores, where gas is not subject to fractionation into microfractures and between clathrate and bubble reservoirs.
Resumo:
Climatic and oceanographic changes, as occurring at a glacial-interglacial scale, may alter the environmental conditions needed for the development of prolific cold-water coral reefs and mounds. Studies constraining the temporal distribution of cold-water corals in the NE Atlantic suggested the cyclic changes of the Atlantic Meridional Overturning Circulation as the main driver for the development and dispersal of cold-water coral ecosystems. However, conclusions were hindered by lack of data from the NW Atlantic. Aiming to overcome this lack of data, the temporal occurrence of cold-water corals in the Cape Lookout area along the southeastern US margin was explored by U-series dating. Furthermore, the local influence of the regional water masses, namely the Gulf Stream, on cold-water coral proliferation and occurrence since the Last Glacial Maximum was examined. Results suggest that the occurrence of cold-water corals in the Cape Lookout area is restricted to interglacial periods, with corals being present during the last ~7 kyr and also during the Eemian (~125 ka). The reconstructed local environmental conditions suggest an offshore displacement of the Gulf Stream and increased influence from the Mid-Atlantic Bight shelf waters during the last glacial period. During the deglacial sea level rise, the Gulf Stream moved coastward providing present-day-like conditions to the surface waters. Nevertheless, present-day conditions at the ocean sea floor were not established before 7.5 cal ka BP once the ultimate demise of the Laurentide ice-sheet caused the final sea level rise and the displacement of the Gulf Stream to its present location. Occasional presence of the Gulf Stream over the site during the Mid- to Late Holocene coincides with enhanced bottom current strength and a slightly higher bottom water temperature, which are environmental conditions that are favorable for cold-water coral growth.
Resumo:
Understanding the response of the Antarctic ice sheets during the rapid climatic change that accompanied the last deglaciation has implications for establishing the susceptibility of these regions to future 21st Century warming. A unique diatom d18O record derived from a high-resolution deglacial seasonally laminated core section off the west Antarctic Peninsula (WAP) is presented here. By extracting and analysing single species samples from individual laminae, season-specific isotope records were separately generated to show changes in glacial discharge to the coastal margin during spring and summer months. As well as documenting significant intra-annual seasonal variability during the deglaciation, with increased discharge occurring in summer relative to spring, further intra-seasonal variations are apparent between individual taxa linked to the environment that individual diatom species live in. Whilst deglacial d18O are typically lower than those for the Holocene, indicating glacial discharge to the core site peaked at this time, inter-annual and inter-seasonal alternations in excess of 3 per mil suggest significant variability in the magnitude of these inputs. These deglacial variations in glacial discharge are considerably greater than those seen in the modern day water column and would have altered both the supply of oceanic warmth to the WAP as well as regional marine/atmospheric interactions. In constraining changes in glacial discharge over the last deglaciation, the records provide a future framework for investigating links between annually resolved records of glacial dynamics and ocean/climate variability along the WAP.
Resumo:
Planktonic foraminiferal faunas, oxygen isotope and modern analog technique sea surface temperature records were obtained in piston core DGKS9603 (28degrees08.869'N, 127degrees16.238'E, water depth 1100 in) collected from the middle Okinawa Trough. During the last glaciation, four cold events were identified and correlate Heinrich events (HE) H2-5 of the last 45 ka. During the last deglaciation, core DGKS9603 has begun to be influenced by the Kuroshio since about 16 cal ka BP. Three weakenings of this warm current occurred at about 2.8-5.3, 11.4 and 15.5 cal ka BP respectively. Among the three fluctuations, the oldest one is synchronous with HE1 and could be a response to the strong cooling observed in the North Atlantic Ocean. The fluctuation occurring at about 11.4 cal ka ago corresponds to the Younger Dryas within the age error bars. Our observations provide new evidence that the HEs documented from Greenland and the northern North Atlantic had a global climatic impact. Changes in the intensity of the East Asian monsoon could be the main mechanism responsible for the paleoccanographic variations observed in the Okinawa Trough. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The evolution and variation history of the Tsushima warm current during the late Quaternary was reconstructed based on the quantitative census data of planktonic foraminiferal fauna, together with oxygen and carbon isotope records of mixed layer dweller a ruber and thermocline dweller N. dutertrei in piston core CSH1 and core DGKS9603 collected separately from the Tsushima warm current and the Kuroshio dominated area. The result showed that the Tsushima warm current vanished in the lowstand period during 40-24 cal ka BP, while the Kuroshio still flowed across the Okinawa Trough, arousing strong upwelling in the northern Trough. Meanwhile, the influence of freshwater greatly increased in the northern Okinawa Trough, as the broad East China Sea continental shelf emerged. The freshwater reached its maximum during the last glacial maximum (LGM), when the upwelling obviously weakened for the lowest sea-level and the depression of the Kuroshio. The modern Tsushima warm current began its development since 16 cal ka BP, and the impact of the Kuroshio increased in the middle and northern Okinawa Trough synchronously during the deglaciation and gradually evolved as the main water source of the Tsushima current. The modern Tsushima current finally formed at about 8.5 cal ka BP, since then the circulation structure has been relatively stable. The water of the modern Tsushima current primarily came from the Kuroshio axis. A short-term wiggle of the current occurred at about 3 cal ka BP, probably for the influences from the enhancement of the winter monsoon and the depression of the Kuroshio. The cold water masses greatly strengthened during the wiggle.
Resumo:
A recently exposed inter-tidal peat bed at Ballywoolen, Bann estuary, Co. Londonderry, has yielded new information about mid-Holocene coastal environmental change in the northeast of Ireland. Pollen analytical data and wood detritus demonstrate that peat accumulation occurred in a terrestrial environment that was free from marine influence. Radiocarbon dates suggest that the peat accumulated rapidly during a period of low relative sea level subsequent to the maximum of Holocene relative sea-level rise along the north coast of Northern Ireland. The absence of marine/brackish indicator taxa at the site suggests that the tidal range was somewhat less than that at present and/or that the channel of the river was located some distance east of its present alignment. The dates indicate that the low stand lasted for at least ~0.2 ka and possibly for ~1.1 ka. Stable, woodland-dominated landscapes are indicated at both this site and neighbouring ones around ~6.4-5.3 cal ka BP. There is no evidence for large-scale aeolian sand movement or human impact on the landscape during the period of peat accumulation.
Correlating Alpine glaciation with Adriatic sea-level changes through lake and alluvial stratigraphy
Resumo:
We compare lake and alluvial stratigraphy along a frame connecting the southern Alpine foothills and the Adriatic Sea, with the aim of matching the effects of Alpine glaciation and sea-level changes on sedimentation during the last glacial cycle. The palynostratigraphy of Lake Fimon provided proxies for regional vegetation and climate change and was coupled with sediment petrography, loss on ignition and magnetic susceptibility, disentangling alluvial phases from fluvioglacial activity related to culminations of the southeastern Alpine glaciers. The Fimon area was not reached by alluvial fans during the penultimate glacial maximum, nor by the sea transgression during the last interglacial, but a closed lake soon developed at the Eemian onset due to enhanced rainfall. Sea-level fall at glacial inception triggered the entrenchment of the drainage network in the plain reaching the outer Fimon Basin. Slow aggradation, but no sign of fluvioglacial activity, lasted to 38.2 +/- 1.45 cal. ka BP, when a major forest withdrawal took place, coeval to the spread of alluvial fans. By 27.5 perpendicular to 0.5 cal. ka BP the Fimon Basin was dammed by the Brenta outwash system. The main step of of forest recovery commenced at around (15.8) cal. ka BP, when apex trenching of the outwash fans was triggered by the glacier's decay. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
The island of Mauritius offers the opportunity to study the poorly understood vegetation response to climate change on a small tropical oceanic island. A high-resolution pollen record from a 10 m long peat core from Kanaka Crater (560 m elevation, Mauritius, Indian Ocean) shows that vegetation shifted from a stable open wet forest Last Glacial state to a stable closed-stratified-tall-forest Holocene state. An ecological threshold was crossed at ∼11.5 cal ka BP, propelling the forest ecosystem into an unstable period lasting ∼4000 years. The shift between the two steady states involves a cascade of four abrupt (<150 years) forest transitions in which different tree species dominated the vegetation for a quasi-stable period of respectively ∼1900, ∼1100 and ∼900 years. We interpret the first forest transition as climate-driven, reflecting the response of a small low topography oceanic island where significant spatial biome migration is impossible. The three subsequent forest transitions are not evidently linked to climate events, and are suggested to be driven by internal forest dynamics. The cascade of four consecutive events of species turnover occurred at a remarkably fast rate compared to changes during the preceding and following periods, and might therefore be considered as a composite tipping point in the ecosystem. We hypothesize that wet gallery forest, spatially and temporally stabilized by the drainage system, served as a long lasting reservoir of biodiversity and facilitated a rapid exchange of species with the montane forests to allow for a rapid cascade of plant associations.