967 resultados para 3-DIMENSIONAL MONOLAYERS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Super-resolution is a method of post-processing image enhancement that increases the spatial resolution of video or images. Existing super-resolution techniques apply only to images captured of a planar scene. This paper aims to extend super-resolution concepts from the 2D domain to the 3D domain, drawing on ideas from both superresolution and multi-view geometry, two fields of research that until now have predominantly been studied in isolation. 2D super-resolution methods are not without their complexities and limitations. However, once multiple views of a scene are considered within a super-resolution framework, a new range of issues arise that must also be resolved. For example, when input images of a scene with variation in depth are considered, it is no longer clear how and where the images should be registered. This paper describes the use of sparse 3D reconstruction in order to ‘register’ the input images, which are then transferred to a novel image plane and combined to increase the perceived detail in the scene. Experimental results using real images captured from generally positioned input cameras are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Super-resolution is an image enhancement method that increases the resolution of images and video. Previously this technique could only be applied to 2D scenes. The super-resolution algorithm developed in this thesis creates high-resolution views of 3-dimensional scenes, using low-resolution images captured from varying, unknown positions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested the ability of overall dynamic body acceleration (ODBA) to predict the rate of oxygen consumption ([Formula: see text]) in freely diving Steller sea lions (Eumetopias jubatus) while resting at the surface and diving. The trained sea lions executed three dive types-single dives, bouts of multiple long dives with 4-6 dives per bout, or bouts of multiple short dives with 10-12 dives per bout-to depths of 40 m, resulting in a range of activity and oxygen consumption levels. Average metabolic rate (AMR) over the dive cycle or dive bout calculated was calculated from [Formula: see text]. We found that ODBA could statistically predict AMR when data from all dive types were combined, but that dive type was a significant model factor. However, there were no significant linear relationships between AMR and ODBA when data for each dive type were analyzed separately. The potential relationships between AMR and ODBA were not improved by including dive duration, food consumed, proportion of dive cycle spent submerged, or number of dives per bout. It is not clear whether the lack of predictive power within dive type was due to low statistical power, or whether it reflected a true absence of a relationship between ODBA and AMR. The average percent error for predicting AMR from ODBA was 7-11 %, and standard error of the estimated AMR was 5-32 %. Overall, the extensive range of dive behaviors and physiological conditions we tested indicated that ODBA was not suitable for estimating AMR in the field due to considerable error and the inconclusive effects of dive type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the influence of the platform-switching technique on stress distribution in implant, abutment, and pen-implant tissues, through a 3-dimensional finite element study. Three 3-dimensional mandibular models were fabricated using the Solid Works 2006 and InVesalius software. Each model was composed of a bone block with one implant 10 mm long and of different diameters (3.75 and 5.00 mm). The UCLA abutments also ranged in diameter from 5.00 mm to 4.1 mm. After obtaining the geometries, the models were transferred to the software FEMAP 10.0 for pre- and postprocessing of finite elements to generate the mesh, loading, and boundary conditions. A total load of 200 N was applied in axial (0 degrees), oblique (45 degrees), and lateral (90) directions. The models were solved by the software NeiNastran 9.0 and transferred to the software FEMAP 10.0 to obtain the results that were visualized through von Mises and maximum principal stress maps. Model A (implants with 3.75 mm/abutment with 4.1 mm) exhibited the highest area of stress concentration with all loadings (axial, oblique, and lateral) for the implant and the abutment. All models presented the stress areas at the abutment level and at the implant/abutment interface. Models B (implant with 5.0 mm/abutment with 5.0 mm) and C (implant with 5.0 mm/abutment with 4.1 mm) presented minor areas of stress concentration and similar distribution pattern. For the cortical bone, low stress concentration was observed in the pen-implant region for models B and C in comparison to model A. The trabecular bone exhibited low stress that was well distributed in models B and C. Model A presented the highest stress concentration. Model B exhibited better stress distribution. There was no significant difference between the large-diameter implants (models B and C).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. The purpose of this study was to construct nomograms of placental volumes according to gestational age and estimated fetal weight. Methods. From March to November 2007, placental volumes were prospectively measured by ultrasonography in 295 normal pregnancies from 12 to 40 weeks' gestation and correlated with gestational age and estimated fetal weight. Inclusion criteria were healthy women, singleton pregnancies with normal fetal morphologic characteristics on ultrasonography, and confirmed gestational age by first-trimester ultrasonography. Results. The mean placental volume ranged from 83 cm(3) at 12 weeks to 427.7 cm(3) at 40 weeks. Linear regression yielded the following formula for the expected placental volumes (ePV) according to gestational age (GA): ePV` (cm(3)) = -64.68 + 12.31 x GA (r = 0.572; P < .001). Placental volumes also varied according to estimated fetal weight (EFW), and the following mathematical equation was also obtained by linear regression: ePV = 94.19 + 0.09 x EFW (r = 0.505; P < 0.001). Conclusions. Nomograms of placental volumes according to gestational age and estimated fetal weight were constructed, generating reference values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluate the one-loop vacuum polarization tensor for three-dimensional quantum electrodynamics (QED), using an analytic regularization technique, implemented in a gauge-invariant way. We show thus that a gauge boson mass is generated at this level of radiative correction to the photon propagator. We also point out in our conclusions that the generalization for the non Abelian case is straightforward.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the stress distribution in implants of regular platforms and of wide diameter with different sizes of hexagon by the 3-dimensional finite element method. We used simulated 3-dimensional models with the aid of Solidworks 2006 and Rhinoceros 4.0 software for the design of the implant and abutment and the InVesalius software for the design of the bone. Each model represented a block of bone from the mandibular molar region with an implant 10 mm in length and different diameters. Model A was an implant 3.75 mm/regular hexagon, model B was an implant 5.00 mm/regular hexagon, and model C was an implant 5.00 mm/ expanded hexagon. A load of 200 N was applied in the axial, lateral, and oblique directions. At implant, applying the load (axial, lateral, and oblique), the 3 models presented stress concentration at the threads in the cervical and middle regions, and the stress was higher for model A. At the abutment, models A and B showed a similar stress distribution, concentrated at the cervical and middle third; model C showed the highest stresses. On the cortical bone, the stress was concentrated at the cervical region for the 3 models and was higher for model A. In the trabecular bone, the stresses were less intense and concentrated around the implant body, and were more intense for model A. Among the models of wide diameter (models B and C), model B (implant 5.00 mm/regular hexagon) was more favorable with regard to distribution of stresses. Model A (implant 3.75 mm/regular hexagon) showed the largest areas and the most intense stress, and model B (implant 5.00 mm/regular hexagon) showed a more favorable stress distribution. The highest stresses were observed in the application of lateral load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to use the finite element method to evaluate the distribution of stresses and strains on the local bone tissue adjacent to the miniplate used for anchorage of orthodontic forces. Methods: A 3-dimensional model composed of a hemimandible and teeth was constructed using dental computed tomographic images, in which we assembled a miniplate with fixation screws. The uprighting and mesial movements of the mandibular second molar that was anchored with the miniplate were simulated. The miniplate was loaded with horizontal forces of 2, 5, and 15 N. A moment of 11.77 N.mm was also applied. The stress and strain distributions were analyzed, and their correlations with the bone remodeling criteria and miniplate stability were assessed. Results: When orthodontic loads were applied, peak bone strain remained within the range of bone homeostasis (100-1500 mu m strain) with a balance between bone formation and resorption. The maximum deformation was found to be 1035 mu m strain with a force of 5 N. At a force of 15 N, bone resorption was observed in the region of the screws. Conclusions: We observed more stress concentration around the screws than in the cancellous bone. The levels of stress and strain increased when the force was increased but remained within physiologic levels. The anchorage system of miniplate and screws could withstand the orthodontic forces, which did not affect the stability of the miniplate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The fiber dissection technique provides unique 3-dimensional anatomic knowledge of the white matter. OBJECTIVE: To examine the optic radiation anatomy and its important relationship with the temporal stem and to discuss its findings in relation to the approaches to temporal lobe lesions. METHODS: We studied 40 cerebral hemispheres of 20 brains that had been fixed in formalin solution for 40 days. After removal of the arachnoid membrane, the hemispheres were frozen, and the Klingler technique was used for dissection under magnification. Stereoscopic 3-dimensional images of the dissection were obtained for illustration. RESULTS: The optic radiations are located deep within the superior and middle temporal gyri, always above the inferior temporal sulcus. The mean distance between the cortical surface and the lateral edge of the optic radiation was 21 mm. Its fibers are divided into 3 bundles after their origin. The mean distance between the anterior tip of the temporal horn and the Meyer loop was 4.5 mm, between the temporal pole and the anterior border of the Meyer loop was 28.4 mm, and between the limen insulae and the Meyer loop was 10.7 mm. The mean distance between the lateral geniculate body and the lateral margin of the central bundle of the optic radiation was 17.4 mm. CONCLUSION: The white matter fiber dissection reveals the tridimensional intrinsic architecture of the brain, and its knowledge regarding the temporal lobe is particularly important for the neurosurgeon, mostly because of the complexity of the optic radiation and related fibers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Radiation therapy (RT) of malignant tumors in the head and neck area may have damaging effects on surrounding tissues. The aim of this investigation was to evaluate the effects of RI delivered by 3-dimensional conformal radiotherapy (3D-RT) or intensity-modulated radiotherapy (IMRT) on dental pulp sensitivity. Methods: Twenty patients with oral or oropharyngeal cancer receiving RT with 3D-RT or IMRT underwent cold thermal pulp sensitivity testing (PST) of 2 teeth each at 4 time points: before RT (TP1), the beginning of RT with doses between 30 and 35 Gy (TP2), the end of RT with doses between 60 and 70 Gy (TP3), and 4 to 5 months after the start of RT (TP4). Results: All 40 teeth showed positive responses to PST at TP1 (100%) and 9 at TP2 (22.5%; 3/16 [18.8%] for 3D-RT and 6/24 [25.0%] for IMRT). No tooth responded to PST at TP3 and TP4 (0%). A statistically significant difference existed in the number of positive pulp responses between different time points (TP1 through TP4) for all patients receiving RT (P <= .05), IMRT (P <= .05), and 3D-RT (P <= .05). No statistically significant differences in positive sensitivity responses were found between 3D-RT and IMRT at any time point (TP1, TP3, TP4, P = 1.0; TP2, P = .74). A statistically significant correlation existed between the location of the tumor and PST at TP2 for IMRT (P <= .05) but not for 3D-RT (P = .14). Conclusions: RT decreased the number of teeth responding to PST after doses greater than 30 to 35 Gy. The type of RT (3D-RT or IMRT) had no influence on the pulp responses to PST after the conclusion of RT. (J Endod 2012;38:148-152)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of oligo-phenylene dendronised conjugated polymers was prepared. The divergent synthetic approach adopted allowed for the facile synthesis of a range of dendronised monomers from a common intermediate, e.g. first and second generation fluorene. Only the polymerisation of the first generation and alkylarylamine substituted dendronised fluorene monomers yielded high molecular weight materials, attributed to the low solubility of the remaining dendronised monomers. The alkylarylamine substituted dendronised poly(fluorene) was incorporated into an organic light emitting diode (OLED) and exhibited an increased colour stability in air compared to other poly(fluorenes). The concept of dendronisation was extended to poly(fluorenone), a previously insoluble material. The synthesis of the first soluble poly(fluorenone) was achieved by the incorporation of oligo-phenylene dendrons at the 4-position of fluorenone. The dendronisation of fluorenone allowed for a polymer with an Mn of 4.1 x 104 gmol-1 to be prepared. Cyclic voltammetry of the dendronised poly(fluorenone) showed that the electron affinity of the polymer was high and that the polymer is a promising n-type material. A dimer and trimer of indenofluorene (IF) were prepared from the monobromo IF. These oligomers were investigated by 2-dimensional wide angle x-ray spectroscopy (2D-WAXS), polarised optical microscopy (POM) and dielectric spectroscopy, and found to form highly ordered smetic phases. By attaching perylene dye as the end-capper on the IF oligomers, molecules that exhibited efficient Förster energy transfer were obtained. Indenofluorene monoketone, a potential defect structure for IF based OLED’s, was synthesised. The synthesis of this model defect structure allowed for the long wavelength emission in OLED’s to be identified as ketone defects. The long wavelength emission from the indenofluorene monoketone was found to be concentration dependent, and suggests that aggregate formation is occurring. An IF linked hexa-peri-hexabenzocoronene (HBC) dimer was synthesised. The 2D-WAXS images of this HBC dimer demonstrate that the molecule exhibits intercolumnar organisation perpendicular to the extrusion direction. POM images of mixtures of the HBC dimer mixed with an HBC with a low isotropic temperature demonstrated that the HBC dimer is mixing with the isotropic HBC.