889 resultados para 291003 Photogrammetry and Remote Sensing
Resumo:
An efficient and reliable automated model that can map physical Soil and Water Conservation (SWC) structures on cultivated land was developed using very high spatial resolution imagery obtained from Google Earth and ArcGIS, ERDAS IMAGINE, and SDC Morphology Toolbox for MATLAB and statistical techniques. The model was developed using the following procedures: (1) a high-pass spatial filter algorithm was applied to detect linear features, (2) morphological processing was used to remove unwanted linear features, (3) the raster format was vectorized, (4) the vectorized linear features were split per hectare (ha) and each line was then classified according to its compass direction, and (5) the sum of all vector lengths per class of direction per ha was calculated. Finally, the direction class with the greatest length was selected from each ha to predict the physical SWC structures. The model was calibrated and validated on the Ethiopian Highlands. The model correctly mapped 80% of the existing structures. The developed model was then tested at different sites with different topography. The results show that the developed model is feasible for automated mapping of physical SWC structures. Therefore, the model is useful for predicting and mapping physical SWC structures areas across diverse areas.
Resumo:
In this study four data quality flags are presented for automated and unmanned above-water hyperspectral optical measurements collected underway in the North Sea, The Minch, Irish Sea and Celtic Sea in April/May 2009. Coincident to these optical measurements a DualDome D12 (Mobotix, Germany) camera system was used to capture sea surface and sky images. The first three flags are based on meteorological conditions, to select erroneous incoming solar irradiance (ES) taken during dusk, dawn, before significant incoming solar radiation could be detected or under rainfall. Furthermore, the relative azimuthal angle of the optical sensors to the sun is used to identify possible sunglint free sea surface zones. A total of 629 spectra remained after applying the meteorological masks (first three flags). Based on this dataset, a fourth flag for sunglint was generated by analysing and evaluating water leaving radiance (LW) and remote sensing reflectance (RRS) spectral behaviour in the presence and absence of sunglint salient in the simultaneously available sea surface images. Spectra conditions satisfying "mean LW (700-950 nm) < 2 mW/m**2/nm/Sr" or alternatively "minimum RRS (700-950 nm) < 0.010/Sr", mask the most measurements affected by sunglint, providing efficient flagging of sunglint in automated quality control. It is confirmed that valid optical measurements can be performed 0° <= theta <= 360° although 90° <= theta <= 135° is recommended.
Resumo:
CO2 capture and storage (CCS) projects are presently developed to reduce the emission of anthropogenic CO2 into the atmosphere. CCS technologies are expected to account for the 20% of the CO2 reduction by 2050. Geophysical, ground deformation and geochemical monitoring have been carried out to detect potential leakage, and, in the event that this occurs, identify and quantify it. This monitoring needs to be developed prior, during and after the injection stage. For a correct interpretation and quantification of the leakage, it is essential to establish a pre-injection characterization (baseline) of the area affected by the CO2 storage at reservoir level as well as at shallow depth, surface and atmosphere, via soil gas measurements. Therefore, the methodological approach is important because it can affect the spatial and temporal variability of this flux and even jeopardize the total value of CO2 in a given area. In this sense, measurements of CO2 flux were done using portable infrared analyzers (i.e., accumulation chambers) adapted to monitoring the geological storage of CO2, and other measurements of trace gases, e.g. radon isotopes and remote sensing imagery were tested in the natural analogue of Campo de Calatrava (Ciudad Real, Spain) with the aim to apply in CO2 leakage detection; thus, observing a high correlation between CO2 and radon (r=0,858) and detecting some vegetation indices that may be successfully applied for the leakage detection.
Resumo:
C0 capture and storage (CCS) projects are presently developed to reduce the emission of anthropogenic co2 into the atmosphere. CCS technologies are expected to account for the 20% of the C0 reduction by 2050.The results of this paper are referred to the OXYCFB300 Compostilla Project (European Energy Program for Recover). Since the detection and control of potential leakage from storage formation is mandatory in a project of capture and geological storage of C02 (CCS), geophysical , ground deformation and geochemical monitoring have been carried out to detect potentialleakage, and, in the event that this occurs, identify and quantify it. This monitoring needs to be developed prior, during and after the injection stage. For a correct interpretation and quantification of the leakage, it is essential to establish a pre-injection characterization (baseline)of the area affected by the C02 storage at reservoir level as well as at shallow depth, surface and atmosphere, via soil gas measurements.
Resumo:
Urban growth and change presents numerous challenges for planners and policy makers. Effective and appropriate strategies for managing growth and change must address issues of social, environmental and economic sustainability. Doing so in practical terms is a difficult task given the uncertainty associated with likely growth trends not to mention the uncertainty associated with how social and environmental structures will respond to such change. An optimization based approach is developed for evaluating growth and change based upon spatial restrictions and impact thresholds. The spatial optimization model is integrated with a cellular automata growth simulation process. Application results are presented and discussed with respect to possible growth scenarios in south east Queensland, Australia.
Resumo:
Remotely sensed data have been used extensively for environmental monitoring and modeling at a number of spatial scales; however, a limited range of satellite imaging systems often. constrained the scales of these analyses. A wider variety of data sets is now available, allowing image data to be selected to match the scale of environmental structure(s) or process(es) being examined. A framework is presented for use by environmental scientists and managers, enabling their spatial data collection needs to be linked to a suitable form of remotely sensed data. A six-step approach is used, combining image spatial analysis and scaling tools, within the context of hierarchy theory. The main steps involved are: (1) identification of information requirements for the monitoring or management problem; (2) development of ideal image dimensions (scene model), (3) exploratory analysis of existing remotely sensed data using scaling techniques, (4) selection and evaluation of suitable remotely sensed data based on the scene model, (5) selection of suitable spatial analytic techniques to meet information requirements, and (6) cost-benefit analysis. Results from a case study show that the framework provided an objective mechanism to identify relevant aspects of the monitoring problem and environmental characteristics for selecting remotely sensed data and analysis techniques.
Resumo:
The normalised difference vegetation index (NDVI) has evolved as a primary tool for monitoring continental-scale vegetation changes and interpreting the impact of short to long-term climatic events on the biosphere. The objective of this research was to assess the nature of relationships between precipitation and vegetation condition, as measured by the satellite-derived NDVI within South Australia. The correlation, timing and magnitude of the NDVI response to precipitation were examined for different vegetation formations within the State (forest, scrubland, shrubland, woodland and grassland). Results from this study indicate that there are strong relationships between precipitation and NDVI both spatially and temporally within South Australia. Differences in the timing of the NDVI response to precipitation were evident among the five vegetation formations. The most significant relationship between rainfall and NDVI was within the forest formation. Negative correlations between NDVI and precipitation events indicated that vegetation green-up is a result of seasonal patterns in precipitation. Spatial patterns in the average NDVI over the study period closely resembled the boundaries of the five classified vegetation formations within South Australia. Spatial variability within the NDVI data set over the study period differed greatly between and within the vegetation formations examined depending on the location within the state. ACRONYMS AVHRR Advanced Very High Resolution Radiometer ENVSAEnvironments of South Australia EOS Terra-Earth Observing System EVIEnhanced Vegetation Index MODIS Moderate Resolution Imaging Spectro-radiometer MVC Maximum Value Composite NDVINormalised Difference Vegetation Index NIRNear Infra-Red NOAANational Oceanic and Atmospheric Administration SPOT Systeme Pour l’Observation de la Terre. [ABSTRACT FROM AUTHOR]
Resumo:
Techniques for improving the signal to clutter ratio of an. ultra-wideband SAR designed to detect small mine-like objects in the surface of the ground were investigated. In particular, images were collected using different bistatic antenna configurations in an attempt to decorrelate the clutter with respect to the targets. The images were converted to a reference depression angle, summed, and then converted to ground coordinates. The resulting target strengths were then compared with the amplitude distribution of the ground clutter to show the improvement obtained. While some improvement was demonstrated, this was for the relatively easy scenario of targets on the surface partially obscured by grass. Detection based on thresholding the raw RF signal (the bipolar response) rather than the envelope (baseband I-2 + Q(2)) was also considered to further enhance target-to-clutter ratios.
Resumo:
The relationship between the production of dimethylsulfide (DMS) in the upper ocean and atmospheric sulfate aerosols has been confirmed through local shipboard measurements, and global modeling studies alike. In order to examine whether such a connection may be recoverable in the satellite record, we have analyzed the correlation between mean surface chlorophyll (CHL) and aerosol optical depth (AOD) in the Southern Ocean, where the marine atmosphere is relatively remote from anthropogenic and continental influences. We carried out the analysis in 5-degree zonal bands between 50 degrees S and 70 degrees S, for the period ( 1997 - 2004), and in smaller meridional sectors in the Eastern Antarctic, Ross and Weddell seas. Seasonality is moderate to strong in both CHL and AOD signatures throughout the study regions. Coherence in the CHL and AOD time series is strong in the band between 50 degrees S and 60 degrees S, however this synchrony is absent in the sea-ice zone (SIZ) south of 60 degrees S. Marked interannual variability in CHL occurs south of 60 degrees S, presumably related to variability in sea-ice production during the previous winter. We find a clear latitudinal difference in the cross correlation between CHL and AOD, with the AOD peak preceding the CHL bloom by up to 6 weeks in the SIZ. This suggests that substantial trace gas emissions ( aerosol precursors) are being produced over the SIZ in spring ( October - December) as sea ice melts. This hypothesis is supported by field data that record extremely high levels of sulfur species in sea ice, surface seawater, and the overlying atmosphere during ice melt.
Resumo:
Sustainable management of coastal and coral reef environments requires regular collection of accurate information on recognized ecosystem health indicators. Satellite image data and derived maps of water column and substrate biophysical properties provide an opportunity to develop baseline mapping and monitoring programs for coastal and coral reef ecosystem health indicators. A significant challenge for satellite image data in coastal and coral reef water bodies is the mixture of both clear and turbid waters. A new approach is presented in this paper to enable production of water quality and substrate cover type maps, linked to a field based coastal ecosystem health indicator monitoring program, for use in turbid to clear coastal and coral reef waters. An optimized optical domain method was applied to map selected water quality (Secchi depth, Kd PAR, tripton, CDOM) and substrate cover type (seagrass, algae, sand) parameters. The approach is demonstrated using commercially available Landsat 7 Enhanced Thematic Mapper image data over a coastal embayment exhibiting the range of substrate cover types and water quality conditions commonly found in sub-tropical and tropical coastal environments. Spatially extensive and quantitative maps of selected water quality and substrate cover parameters were produced for the study site. These map products were refined by interactions with management agencies to suit the information requirements of their monitoring and management programs. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The Wet Tropics World Heritage Area in Far North Queens- land, Australia consists predominantly of tropical rainforest and wet sclerophyll forest in areas of variable relief. Previous maps of vegetation communities in the area were produced by a labor-intensive combination of field survey and air-photo interpretation. Thus,. the aim of this work was to develop a new vegetation mapping method based on imaging radar that incorporates topographical corrections, which could be repeated frequently, and which would reduce the need for detailed field assessments and associated costs. The method employed G topographic correction and mapping procedure that was developed to enable vegetation structural classes to be mapped from satellite imaging radar. Eight JERS-1 scenes covering the Wet Tropics area for 1996 were acquired from NASDA under the auspices of the Global Rainforest Mapping Project. JERS scenes were geometrically corrected for topographic distortion using an 80 m DEM and a combination of polynomial warping and radar viewing geometry modeling. An image mosaic was created to cover the Wet Tropics region, and a new technique for image smoothing was applied to the JERS texture bonds and DEM before a Maximum Likelihood classification was applied to identify major land-cover and vegetation communities. Despite these efforts, dominant vegetation community classes could only be classified to low levels of accuracy (57.5 percent) which were partly explained by the significantly larger pixel size of the DEM in comparison to the JERS image (12.5 m). In addition, the spatial and floristic detail contained in the classes of the original validation maps were much finer than the JERS classification product was able to distinguish. In comparison to field and aerial photo-based approaches for mapping the vegetation of the Wet Tropics, appropriately corrected SAR data provides a more regional scale, all-weather mapping technique for broader vegetation classes. Further work is required to establish an appropriate combination of imaging radar with elevation data and other environmental surrogates to accurately map vegetation communities across the entire Wet Tropics.
Resumo:
Government agencies responsible for riparian environments are assessing the utility of remote sensing for mapping and monitoring vegetation structural parameters. The objective of this work was to evaluate Ikonos and Landsat-7 ETM+ imagery for mapping structural parameters and species composition of riparian vegetation in Australian tropical savannahs for a section of Keelbottom Creek, Queensland, Australia. Vegetation indices and image texture from Ikonos data were used for estimating leaf area index (R-2 = 0.13) and canopy percentage foliage cover (R-2 = 0.86). Pan-sharpened Ikonos data were used to map riparian species composition (overall accuracy = 55 percent) and riparian zone width (accuracy within +/- 3 m). Tree crowns could not be automatically delineated due to the lack of contrast between canopies and adjacent grass cover. The ETM+ imagery was suited for mapping the extent of riparian zones. Results presented demonstrate the capabilities of high and moderate spatial resolution imagery for mapping properties of riparian zones.